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Abstract 

A new approach to the evaluation of two-electron repulsion integrals over contracted Gaussian 
basis functions is developed. The new scheme encompasses 20 distinct, but interrelated, paths 
from simple shell-quartet parameters to the target integrals, and, for any given integral class, the 
path requiring the fewest floating-point operations (FLOPS) is that used. Both theoretical (FLOP 

counting) and practical (CPU timing) measures indicate that the method represents a substantial 
improvement over the HGP algorithm. 

Introduction 

Because of their large number, the evaluation and manipulation of two- 
electron integrals is the major difficulty in a Hartree-Fock calculation. 

A. Szabo and N. S. Ostlund [l] 

Over the decades, this realization has been the single most important driving 
force in formulating improvements to practical implementations of the Hartree- 
Fock self-consistent field (SCF) method. By 1980, several ingenious algorithms 
[2-41 for the evaluation of two-electron repulsion integrals (EMS) were available, 
and since (in a conventional SCF calculation) the ERIS need be computed only 
once (after which they are stored and retrieved on each iteration of the SCF pro- 
cedure), there appeared to be little to be gained by further improving the ERI 

evaluation algorithms. 
The balance, however, was shifted substantially when, in 1982, Almlof and co- 

workers introduced the “direct SCF” method [5] in which ERIS are recomputed on 
each iteration of the SCF. Recently, too, the “direct” approach has been extended 
to M P ~  calculations [5,6]. Direct methods allow very large calculations to be per- 
formed without prohibitively large disk requirements, but, naturally, they cost 
much more than do their conventional analogs. Indeed, the cost of a direct SCF or 
direct M P ~  calculation is essentially some multiple of the cost of the associated 
ERI evaluation. Clearly, within such a framework, it is crucial that highly effi- 
cient methods for ERI computation be utilized. 

After lying dormant for several years, the study of novel ERI algorithms was 
invigorated by the discovery of the Obara-Saika (0s) recurrence relation [7] 
(which had been implicit in earlier work [8] by Schlegel) in 1986. Two years later, 
Head-Gordon and Pople (HGP) suggested [9] that the 0s methodology is improved 
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if the 0s recurrence relation is used in judicious combination with another that 
they called the horizontal recurrence relation. Recently, Hamilton and Schaefer 
showed that the addition of a third recurrence relation to the HGP scheme 
results in even greater efficiency [lo], and we have argued that a hybrid of the 
McMurchie-Davidson (MD) scheme [4] and HGP methodology is superior to 
either [ll]. 

Any ERI may be characterized by two quantities (to be defined later), its angu- 
lar momentum L,, 2 0 and its degree of contraction K,, 2 1, and, given these, it 
is possible to make qualitative statements about the performance of each of the 
algorithms above in computing the ERI. For example, the Pople-Hehre (PH) axis- 
switching technique [2] is particularly effective when applied to ERIS with large 
K,, but is otherwise very expensive. It is most commonly used for small-L,, ERIS. 

Conversely, the Rys quadrature [3] is best suited to small-K,, ERIS and is most 
commonly used in large-L,, cases. The MD [4] and 0s [7] formulations function 
well for all values of L,, provided that K,, is rather small, but become excessively 
expensive when this is not so. The more recent algorithms [9-111 behave better 
than does 0s as K,, increases, but are still inferior to the PH method for moderate 
to large K,, values. 

Is there any pattern to these algorithmic behaviors that might suggest how to 
construct a new methodology that performs well for all and K,,? Fortunately, 
there is, and a very useful trichotomy is revealed: 

(a) The algorithms that achieve their best results when K,, is large but that be- 
come inefficient elsewhere are those in which the contraction step occurs 
very early in the methodology. The archetype of such algorithms is the PH 
axis-switch method [2]. 

(b) The defining characteristic of the algorithms that perform very well when K,, 
is small but that lose their effectiveness elsewhere is that their contraction 
step occurs as the last stage in the methodology. The Rys [3] and 0s [7] al- 
gorithms exemplify this category. 

(c) Between these two extremes, we find the algorithms in which contraction is 
introduced at some intermediate stage. Although inferior to the PH method 
when K,, is large and inferior to the 0s method when K,, is small, the al- 
gorithms in this category, which include the MD- and HGP-based [4,9-111 
methodologies, offer a generally useful performance compromise. 

In recognition of this trichotomy, and in order to perform satisfactorily for all 
combinations of L,, and K,,, current ab initio programs have had to include sev- 
eral, quite distinct, ERI subprograms. For example, faced with the computation of 
a certain ERI, GAUSSIAN 90 [12] uses simple heuristic rules to select an al- 
gorithm from a repertoire consisting of PH, Rys, os, and HGP codes. However, 
such code proliferation, and the inaccuracies associated with the automatic se- 
lection process, are clearly undesirable. 

The PRISM algorithm, on the other hand, is explicitly designed to permit the 
contraction steps to occur precisely where it is most efficient for them to do so. It 
is hoped that this intrinsic flexibility will enable the PRISM algorithm to per- 
form well for a wide range of classes of ERI. 
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Notation and Definitions 

An unnormalized primitive Cartesian Gaussian function, 

(Pak(r) = ( X  - A,)"x(y - Ay)(ly(Z - A,)%Xp[-ffk(r - A)'], (1) 

is defined by its angular momentum vector a = (ax,uy,az), by its position vec- 
tor A, and by its exponent f f k .  Its angular momentum a = (a, + uy + uz). We 
will refer to a set of primitive functions on a given center and with a given expo- 
nent as a primitive shell. 

Primitive functions are often linearly combined to form a contracted Cartesian 
Gaussian function 

where the D a k  are known as contraction coefficients and KA is known as the de- 
gree of contraction of c $ ~ .  

The primitive four-center Gaussian ERI is the integral 

The left-hand subscripts are rarely of particular interest, and it is common to de- 
note the integral (3) by [ab I cd]. 

Combining (2) and (3) leads to a contracted four-center Gaussian ERI 

KA KB KC KD 

(ab 1 cd) = 2 2 2 2 DnkADbkaDckcDdkD[akabks I Ck~dk~] 7 (4) 
kA ka k c  kD 

which we distinguish from a primitive ERI by the use of parentheses instead of 
square brackets. A class of EMS is defined as the set of all (ab I cd) associated with 
a given shell-quartet. 

The total angular momentum of the ERI (4) is L,, = (a + b + c + d) .  Its bra 
degree of contraction and ket degree of contraction are Kbra = KAKB and 
Kker = KcKD, respectively. Its total degree of contraction is K,, = KbraKker. 

Associated with two primitive Gaussian functions cpa and (Pb (centered at A 
and B, with angular momenta a and b, with exponents a and p, and with con- 
traction coefficients DA and DB) is another center P and two paramters up and 
Up defined by 

u p  = 1/(2a + 2p) (5)  

(6) 

(7) 

A Dg exp[ -2apup(A - B)'] up = (8T3)1/2u;+b+3/2~ 

P = (2aA + 2pB)~p,  

and, analogously associated with the primitive functions qC and (Pd, we define 
another center Q and two parameters UQ and UQ. 
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As we have previously shown [ll, 131, to compute the class (4), we form 

[O]'"' = U(26 ) m + 1 / 2 ( ~ ) 1 ' 2  [t'"exp(-Tt')dt. 

Given the set of [O]'"' (0 I rn I L,,), as MD and we [4,11] have shown, it is 
possible to use a recurrence relation to form the set of intermediate Hermite ERIS 

[r] (0 I r I Lmt). The [r] are equal, within a change of sign, to ERIS that we des- 
ignate by [p I q] and that represent the electrostatic interaction between one 
primitive (Hermite) function on center P and another on center Q. We refer to 
the function on center P, which we symbolize by [p 1, as a p-bra. Likewise, we 
refer to the function on center Q, which we symbolize by lq], as a q-ket. MD 
and we have shown [4,11] that various recurrence relations may then be used to 
bru-transform the [p I q] to [ab I q] and to ket-transform the [ab I q] to the desired 
[ab I cd]. Moreover, as we have argued [ll], the bru- and ket-transformation 
steps can be generalized to produce not only ERIS like [ab I cd] but, also, their 
derivatives with respect to A, B, C, and D. In this very general framework, we 
symbolize the results of the bru-transformation by [bra I q] and those of the ket- 
transformation by [bra 1 ket]. 

The issue of contraction, which is central to the PRISM algorithm, may now 
be discussed. Straightforward contraction is exemplified by 

Kbm 

(bra I ket] = 2 [bra I ket] 

Kker 

(bra I ket) = 2 (bra 1 ket] , (15) 

and we note that a contraction like (14) requires exactly Kbra - 1 additions. How- 
ever, as we have previously suggested [ll], it is frequently beneficial to generalize 
this concept to include simultaneous scaling of the uncontracted quantities by 
exponent ratios. Examples of this type of contraction are 

Note that the contraction (16) requires Kbra - 1 additions and Kbra multiplies. 
Throughout this paper, we will use the acronym FLOP for a floating-point opera- 

tion, that is, a floating-point add, subtract, multiply, or divide. The number of 
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FLOPS required by a given algorithm to compute a class of ERIS (its FLOP-count) is 
usually a good theoretical indication of the practical performance of the al- 
gorithm when implemented on a computer, and this fact lies at the heart of the 
PRISM method. 

A New Algorithm for Two-Electron Integrals 

In Figure 1, we symbolically represent a number of interrelated paths from un- 
contracted [O]'") integrals (at the top left corner) to fully contracted (bra I ket)'s 
(at the bottom right). The figure is structured so that an arrow to the right 
corresponds to a contraction step, while a downward pointing arrow indicates a 
transformation step, i.e., one in which recurrence relations are used to build or 
shift angular momentum. Since it is clear that any path from [O]'"' to (bra I ket) 
must involve three transformation and two contraction steps in some order, it is 
possible to label each path uniquely by an acronym indicating the order in which 
the transformation and contraction steps are performed. For example, the path 
that passes through the (0)(") would be termed CCTTT, while, at the other ex- 

cz 
a'b'p' a' b' p' c ' d' q' 

[ O f r n )  ( O f r n )  - ( 0 ) y  

1- 
& 

a'b'p' 
[PI  

UT4 
lT2 n 

CJ ( r )  
a'b' p' c' d' q' 

r l  

U T 5  n6 
IT7  UT8 IT9  

[bra I ket  ]A> (bra I ket I%$( bra I ket ) 
Figure 1. Ten PRISM pathways from [O]'"') to (bra I ket). 
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treme, the path that passes through [bra I ket] would be termed TTTCC. It 
should be apparent that there are exactly 10 paths through Figure 1. 

We note that TTCTC is very similar to the standard MD algorithm, which, as 
MD indicated [4], can be shown to be always at least as efficient as TTTCC. We 
also note that, in the context of the BRAKET algorithm [ll], we have previously 
termed TCTCT and TCCTT the “late contraction” and “early contraction” 
paths, respectively. 

To perform the transformation steps (TI to T9) in Figure 1, appropriate recur- 
rence relations must first be derived. Many years ago, MD developed ones appro- 
priate for uncontracted bra- and ket-transformations (T4, T7, and T8) and for the 
uncontracted r-transformation (T1). More recently, we have presented a variety 
of recurrence relations Ell] that are applicable to both uncontracted and con- 
tracted bra- and ket-transformations (T4 - T9). The recurrence relations for the 
remaining r-transformations (Tz and T3) can be deduced easily from that for the 
T1 transformation: 

[r](m) = Ri[r - li](m+l) - (ri - 1)[r - 2i](m+l), (18) 

by expanding Ri = Qi - P, in various ways. For the T2 transformation, we use 

from which it follows that 

a,b,p,(r)$$q, = (Bi - Ai)(a,+i)byp’+i)(r - li):;?;) + (ct - Di)o*b’p,(r - 1 i ) { ~ ~ ~ ~ ~ * ( q ~ + 1 )  
+ (oi - B,)arb,p,(r - li)L;;) - (r, - l)afbtp,(r - 2i)L~?;,) . (22) 

As we have noted before [ll], it is possible to improve the efficiency of the T1, 
Tz, and T3 transformations by solving the tree-search problem that is implicit in 
the T1 transformation when Lfof > 2. We have examined this problem in detail 
and our results are presented elsewhere [14]. 

We now have at our disposal all of the recurrence relations necessary to form 
any desired braket from [O](”) integrals using any of the 10 paths in Figure 1. We 
note, however, that Figure 1 can be generalized further. The constraint that the 
bra-contraction precedes the ket-contraction and that the bra-transformation 
precedes the ket-transformation is unnecessary and, in Figure 2, it is removed. 
Figure 2 (which is, of course, a rectangular prism) contains 20 paths from [O](”) 
to (bra I ket) and, henceforth, we will refer to these as PRISM paths. 
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Figure 2. The general PRISM from [O]'"') to (bra I ket). 

At this point, it is instructive to present detailed examples of how a class of 
ERIS might be formed on various PRISM paths. Specifically, we will consider 
the problem of forming a class of ( p s  I ps)  ERIS and we will use the CCTTT and 
TCTTC paths as examples. 

Example 1: Forming (ps  I ps) ERIS on the CCTTT Path 

The discussion is facilitated if we work backward along the CCTTT path. 
Thus, we begin by considering the ket-transformation step, i.e., the formation of 
(p is  1 pis) from (p i s  1 q ) c ' d ' q ' .  From Eq. (45) in [llb], we have 

(23) 
and, as (23) costs two FLOPS for each of the nine (p is  I pis), the step-cost of the 
ket-transformation T9 = 18 FLOPS. 

Continuing backward, we next consider the bru-transformation step, i.e., the 
formation of (p is  1 q ) r ' d ' q '  from n ~ ~ r p , ( p  1 q ) e ' d ' q ' .  As above, we have 

(pis 1 pis) = (oj - Cj) (pis 1 ~ ) O I I  + (pis I p j ) m l ,  

(pis I q ) c ' d ' q '  = (Bi - Ai)Oll(s I d c ' d ' q '  + OOl(pi I d c ' d ' q '  (24) 
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and, as (24) costs two FLOPS per (pis I q)crdtq, and we have just found that there are 
12 of these to form, the bra-transformation step-cost T6 = 24 FLOPS. 

Knowing the four p-bras and four q-kets that are needed and the Hermite 
identity [4,11] 

enables us to list, as follows, the 13 u,b,p,(r)c,d,ql that are needed: 

In a ket-contraction costing C z  = (22Kk, - 14) FLOPS, these integrals can be 
formed from the following eight a,b'p,(O]&j integrals: 

0 1 1 ~ 0 1 ~ 1 , 0 0 1 ~ ~ 1 ~ ~ 1 , 0 1 1 ~ 0 1 ~ d 1 , 1 0 2 ~ 0 1 ! ~ 1 , 1 1 2 ~ 0 1 ~ d 1 ,  ool~olb'd,, 1 0 2 ~ 0 1 ~ ~ ,  203~01h!1 9 

001 [Olbll, 001 [OI% , 001 [OIb"d, 

(34) 

which, in turn, can be formed from the following three 001[0]6Z1 integrals: 

(35) 

in a bra-contraction step costing C1 = (14Kb, - 8)Kk, FLOPS. 

It turns out [13] that a set of OOl[O]&$ (0 I m 5 2) can be formed from the 
corresponding set of F,(T) integrals at a cost X = 6KbroKke, FLOPS (and Kbra Kket 
square roots). Finally, to find the total cost of forming a class of (psIps)  ERIS 

from F,(T) integrals along CCTTT, it suffices simply to add together the six 
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step-costs that we have just computed. Thus, 

CCTTT-cost = X + C1 + Cz + T3 + T6 + Tg 

= 6KbraKket (14Kbra - 8)Kkei + (22Kket - 14) + 108 + 24 + 18 

= 20KbraKket + 14Kket + 136. (36) 

Henceforth, we will often represent the FLOP-cost incurred along a given path 
when forming a given braket class by expressing it in this form, i.e., 

Path-cost = XKbraKket 4- y&,, 4- Z ,  (37) 

and we will refer to x, y, and z as the path-cost parameters for that path and 
braket class. Note that, for uniform contraction K, this becomes the familiar 

Path-cost = xK4 + yK2 + z .  (38) 

Example 2: Forming (ps Ips) ERIS on the TCTTC Path 

As before, we will work backward along the TCTTC path. Thus, we begin by 
considering the ket-contraction step, i.e., the formation of ( p s  Ips) from (ps  I ps], 
which is defined by the simple contraction formula 

The summation clearly involves Kkef - 1 additions and, since we are forming 
nine ( p l s  I p,s), the ket-contraction cost Cs = 9Kke, - 9 FLOPS. 

Continuing up the PRISM, we next consider the ket-transformation step in 
which ( p l s  I p,s] are formed from ( p l s  I q]. From Eq. (45) in [llb], we have 

(40) 

and, as this recurrence relation costs two FLOPS per ( p l s  I p,s] and there are 9Kket 
of these, the ket-transformation step-cost T8 = 18Kket FLOPS. 

Proceeding to the bra-transformation step, in which ( p l s  I qlOo1 are formed from 
a , ~ p 8 ( p  I q]wl, we have (as in the previous example) 

(41) 

and, as this recurrence relation costs two FLOPS per ( p l s  I q]ool and we have just 
discovered that there are 12Kk,, of these to form, the bra-transformation step- 
cost Ts = 24Kket FLOPS. 

Knowing the fourp-bras and four q-kets that are needed and the Hermite 
identity [4,11], 

( P l S  I p,sI = (28) (D, - C,) ( P l S  1 s1001 + ( P l S  I p,1001, 

( P l S  I ql001 = (Bl - 4 0 1 1 ( s  lQlOO1 + Ool(P1 I ql001,  

a'b'p'(P I qk'd'q' = (-l)qa'b'p'(p + q k ' d ' q '  (42) 

enables us to list, as follows, the 13 a'Vp,(r] that are needed: 

011(01001,011(111001,001(111001, oo1(21,1001. (43) 
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These (r] can be formed, in the bra-contraction step, as follows: 

011(01001 = 2 (2P)00l[O]OOl (44) 

ool(2ijI~l = C ool[2ijlool. (47) 
To form the four OO1(r]oO1 requires 4(Kbm - l)Kke, additions and 4KbrnKkel multi- 
plies, while formation of the 9 ml(r]Ool requires 9(Kbrn - l)Kket adds. Thus, the 
cost of the bra-contraction Step is C3 = 17KbrnKket - 13Kkel FLOPS. 

The required [r] are formed in the T1 step (18) as follows: 

001[1il001 = Ri 001[0]& (48) 

which, it is easily verified, costs T1 = 15Kbra Kker FLOPS. 

As before, the set of 001[0]6?1 (0 5 m 5 2) can be formed from the F,(T) inte- 
grals at a Cost x = 6KbrnKket FLOPS (and square roots). Thus, the total 
cost of forming a class of (ps I ps) ERIS from Fm(T) integrals along TCTTC is 

x + Ti + c3 + "5 + Ts + c s  = 6KbrnKke, + 15KbrnKket + (17Kbra - 13)Kket 
24Kkel + 18Kker -t (9Kkel - 9) 

= 38KbrnKkel 4- - 9. (51) 
Thus, the x, y, and z path-cost parameters for (ps 1 ps) formation on the TCTTC 
path are 38, 38, and -9, respectively. 

The Theoretical Performance of the PRISM Algorithm 

Throughout this paper, our principal interest is the efficient generation of 
(bra I ket) from [O]'"), and we will not discuss how the [O]'"' may be formed in the 
first place. Elsewhere [14], however, we have addressed this question in detail 
and have presented an optimized scheme for the formation of [0](") from shell- 
pair data, and this scheme is easily modified to compute [ss I s ~ ] ( ~ )  if these are re- 
quired. In order to compare the FLOP-costs of methods that use [O]'") integrals 
with methods that use [ss I ss](") integrals, we must establish a "common denomi- 
nator." We have shown [13] that a complete set of [O](") (0 5 m 5 Llol) can be 
formed from the corresponding Fm(T) integrals in 2L,, + 2 FLOPS and one 
square root, and it is straightforward to deduce that the analogous cost for form- 
ing a set of [ss 1 s ~ ] ( ~ )  is L,, + 2 FLOPS and one square root. Therefore, for FLOP- 
counting purposes in the present paper, we will assume that all F,(T) have 
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l7 Kbra K k e r -  l 3  Kket  

already been computed and any path-cost parameters that we will discuss will 
pertain to the cost of forming EMS from these F,(T) integrals. We will simply ig- 
nore the square root since this is common to all algorithms that we will consider. 

Analyses analogous to that performed in the foregoing section for (ps I ps) 
along the CCTTT and TCTTC paths can be conducted for other ERI classes and 
other paths. Proceeding in this way for (ps I ps), (pp I pp), and (dd I dd)  classes 
leads to the associated PRISM step-costs (Figs. 3-5) and path-cost parameters 
(Table I). 

Table I contains path-cost parameters for PRISM paths and for three other 
methods. The PH axis-switch technique and HGP algorithm have been described 
in detail elsewhere [2,9]. 0s did not provide a prescription for the use of their 
recurrence relation [7], and, for this reason, it was necessary first for us to design 
one. We have adopted the following “left-to-right” approach: The recurrence re- 
lation is first used to reduce the angular momentum at A to zero, then it is simi- 

17 K k e t - 1 3  

l5 Kbra K k e r  57 ker 108 

24 Kbra Kker 24 Kker 24 

l8  Khra Kker 18 

Figure 3. PRISM step-costs (in FLOPS) for (ps I ps) formation 
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86 Kbra Kket s94 Kket 1911 

Figure 4. PRISM step-costs (in FLOPS) for (pp  I p p )  formation. 

larly applied to B, then to C and, finally, to D. When a function can be reduced 
in more than one way (e.g., dxy) ,  we choose the reduction direction from the op- 
timal T1 transformation that we have examined elsewhere [14]. Specifically, we 
reduce dxy, d,,, and dyz in the x ,  z,  and y directions, respectively. 

Similarly, as we have discussed previously [ll], there is often more than one 
way in which the various one-electron recurrence relations that we have con- 
structed [ll] can be used to form a desired class of bras (or kets) in the PRTSM 
approach. The ( p s  I bras) that we needed in the foregoing section can be formed 
in only one way, namely, 

(pis1 = (Bi - Ai)oll(sl + m l ( p i l .  (52) 
In general, our program reduces more complicated bras (e.g., (dd( etc.) by “left- 
to-right’’ application of the (p + a) recurrence relation (Eq. (45) in [llb]) and its 
analogs, (p -+ b), (q 4 c), and (q -+ d). 
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622 Kbra Kket 13429 Kker 94 733 

46056 

9944 Kbra Kket 19944 Kkel 218I6 

Figure 5. PRISM step-costs (in FLOPS) for (dd I dd)  formation. 

Although we do not expect the “left-to-right’’ recipe to lead to optimal reduc- 
tion schemes for either 0s or PRISM, its performance appears to be adequate. In 
one important special case, however, that of (pp  I bras), the PRISM program uses 
the following, more carefully optimized, reduction scheme: 

d p j l  = ml(pjl - 102(pjl 

101(pi~l = (Bi - Ai)I*Z(SI + 102(piJ 

(pipj[ = (Aj - Bj)l0l(pis( + (Bi - Ai)olz(pj( + 002(dijl + 6ijool(sl- 

(53) 
(54) 

(55) 

It is clear from Table I that the most efficient path to any given ERI class will 
be very dependent on the Kbra and Kker values of the class. For a particular class 
and particular values of Kbra and Kker, the path-costs can be evaluated using the 
formulae in Table I and the optimal PRISM path thereby selected. The results of 
such analyses are displayed in Figures 6-8 that we term “Choice Diagrams” for 
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TABLE I. Path-cost parameters for ERI formation." 

CCTTT 
CTCTT 
CTTCT 
CTTTC 
TCCTT 
TCTCT 
TCTTC 
TTCCT 
TTCTC 
TTTCC 

PH 
HGP 

OSd 

20 
20 
20 
20 
38 
38 
38 
57 
57 
72 

19 
64 
64 

14 
66 
88 

100 
4 

26 
38 
3 

15 
0 

74 
0 
0 

136 
29 
6 

-9 
29 
6 

-9 
6 

-9 
-9 

90 
-9 
-9 

70 
70 
70 
70 

225 
225 
225 
646 
646 

1051 

750 
1017 

168 
771 

1240 
1537 
129 
598 
895 
108 
405 

0 

0 
0 

2904 
976 
306 
-81 
976 
306 
-81 
306 
-81 
-81 

243 
-81 

575 
575 
575 
575 

2,655 
2,655 
2,655 

21,290 
21,290 
41,270 

13,466 
45,823 

5,506 
18,079 
39,289 
55,597 
3,852 

25,062 
41,370 
3,672 

19,980 
0 

0 
0 

159,624 
65,212 
19,080 

65,212 
19,080 

19,080 

- 1,296 

- 1,296 

- 1,296 
- 1.296 

10,295 
- 1,296 

'It is assumed that all necessary F,(T) integrals are available (see text). 
bThe Pople-Hehre axis-switch algorithm [2]. 
T h e  Head-Gordon-Pople algorithm [9]. 
dThe Obara-Saika algorithm [7] using a "left-to-right" reduction scheme (see text). 

the PRISM paths. On the basis of the three ERI classes analyzed, we can make a 
number of useful observations: 

(a) Large values of K,o, = KbrnKket favor paths in which contraction is introduced 
early, whereas small values favor paths with late contraction. 

2 5  I 2 3 4 

1 TTTCC rl 
2 

K 3  
bra 

4 

Figure 6. Choice diagram for (ps  I ps) formation 
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1 

2 

K 3  
bra 

4 

2 5  

Figure 7. Chcfice diagram for ( p p  I pp)  formation. 
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Figure 8. Choice diagram for (dd I dd) formation. 
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(b) Generally speaking, paths in which contraction is introduced early become 
less favorable as L,, increases. For example, it is clear that the CCTTT path 
will always become optimal when Kbra 2 K,,, and Kke, 2 Kcri, for some class- 
dependent critical value KCrit. However, while Kcri, = 1 (trivially) for (ss I ss), 
we find that Kcri, = 3 for (ps lps) ,  Kcrit = 4 for ( p p l p p )  and Kcri, = 8 for 
(dd I dd) .  

(c) The path-cost parameters for HGP (which could be viewed as a TCCT 
method) most closely resemble those of the TTCCT PRISM path. 

(d) HGP is much cheaper than is 0s for uncontracted (dd I dd) .  This important fact 
has not previously been recognized in the literature. 

(e) The path-cost parameters of the PRISM paths range from being comparable 
to those of the PH axis-switch technique to being similar to those of the 0s 
method. This suggests that PRISM has the flexibility to perform well for a 
wide range of ERI classes but that it will be poorest for uncontracted, high-an- 
gular momentum classes. 

The Practical Performance of the PRISM Algorithm 

To compare the practical performance of our implementation of PRISM 
with implementations of other methods, we have measured CPU timings on 
MicroVax-I1 and VAXStation-3100 computers. Although our PRISM program is 
vectorizable (it is modeled on our BRAKET program [ll] and its loop structure 
is shown in Fig. 9), these machines are both scalar computers. We plan to 
publish CPU timing comparisons on vector computers (Alliant FX-8 and 
Cray Y-MP) in the near future. 

Head-Gordon and Pople have previously discussed the practical performance 
of their implementation of the HGP algorithm [9] relative to the GAUSSIAN 86 
implementations of the PH [2] and Rys [3] algorithms. They found that HGP was 
uniformly faster than was Rys for all ERI classes and faster than PH except for 
highly contracted classes. These results were consistent with FLOP counts that 
they had also computed. It appears, therefore, that the best standards against 
which to compare our PRISM program are the HGP and PH programs. 

Following HGP’S example [9], we first examine the relative performances of the 
ERI programs on “pure” systems, i.e., ones that contain only one type of shell. 
Each case consists of 12 shells in a bicubic arrangement. In the (ss I ss) case, the 
shells are those from the S T O - 4 ~  basis set for hydrogen [15] and the edge length 
of the bicube is 0.8 A. In the ( p p  1 pp)  and (sp, sp I sp, sp) cases, the shells are 
those from the STO-2~ basis set for carbon [15] and the edge length is 1.4 A. In 
the (dd I dd)  case, the shells are uncontracted with exponent 0.8 and, again, the 
edge length is 1.4 A. In Table 11, we compare the times taken by the HGP, PH, and 
PRISM codes to compute all of the ERIS in each of the four systems. No point- 
group symmetry was used, and the requested accuracy was 10-l’ for HGP and 
PRISM and about for PH. The computer used was a MicroVAX-I1 run- 
ning VMS. 

The (ss I ss) results reflect the different approaches of the three codes to the 
task of computing the incomplete gamma function: HGP uses 6th-order Taylor in- 
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Call CalcS2 and CalcS3 to compute and order shell-pair information 
For L = 0 to MaxL 

Call TabGmT to set up table for interpolating G,(T) 
Call MakMD2 to form driver for [O]("')-[r] transformation 
For each bra angular momentum type 

Call MakleT to form drivers for bra transformation 
For each ket angular momentum type 

Call MakleT to form drivers for ket transformation 
Call various routines to form contraction drivers etc. 
For each bra degree of contraction 

For each ket degree of contraction 
Call Choose to select the optimal PRISM Path 
Call CalcSF to compute two-centre scaling factors 
Call CalcBS to find maximum possible batch size 
For each batch of shell-quartets, until finished 

Call PickS4 to select the batch 
Call CalcS4 to form basic shell-quartet parameters 
Call CalcOm to form [ofrn) 
Call DoCont to do the bra-contraction 
Call DoCont to do the ket-contraction 
Call DoMD4 to do the (O)("')-(r) transformation 
Call DoShuf to form ( p I q ) = ( -1 )q( p + q ) 
Call DoTran to transform ( p I - ( bra I 
Call DoShuf to transpose ( bra I q ) 
Call DoTran to transform I q )-I ket ) 

Next batch of shell-quartets 
Next ket degree of contraction 

Next bra degree of contraction 
Next ket angular momentum type 

Next bra angular momentum type 
Next L 

Figure 9. Program loop structure for braket formation using the CCTTT path. 
(Other paths result from permuting the calls to DoCont, DoMD4, and DoTran.) 

terpolation, as recommended by MD [4] and Harris [16]; PH uses Everett's Formula 
with Throwback [17]; PRISM employs 3rd-order Chebyshev interpolation [13]. 
The high efficiency of Chebyshev interpolation is well known. 

In the (pp  I pp)  example, the PRISM program selected the CCTTT path. (Note 
that this could have been anticipated from Fig. 7 with Kbnr = Kker = 4). It is easy 
to deduce, from the path-cost parameters in Table I, that CCTTT needs less 
than half as many FLOPS as does HGP for K = 2 ( p p  I pp)  and, accordingly, the ra- 
tio of the HGP and PRISM timings is greater than 2. The performance of the PH 

program is intermediate between HGP and PRISM, but the comparison here is not 
quite fair: PH begins by assuming that each of the p shells is an sp shell and, 
therefore, computes many more ERIS than are required. Only afterward does the 
PH program discard the unwanted EMS. 
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TABLE 11. Comparative timings for EN evaluation.a 

(ss I ss) (PP I PP) (SP, SP I SP, SP) (dd 1 dd) 
K = 4  K = 2  K = 2  K = l  

HGP 346 550 188 919 
PH 333 409 431 
PRISM‘ 25 8 215 408 1592 

d 

“In CPU seconds on a MicroVAX-I1 computer (see text for details). 
hThe Head-Gordon-Pople method [9] as implemented in GAUSSIAN 90 [12]. 
‘The Pople-Hehre method [2]: Link 311 of GAUSSIAN 90 [12]. 
dThe PH method is not implemented ford functions in GAUSSIAN 90. 
“The present algorithm. 

A fairer comparison between PRISM and PH is afforded by the (sp, sp 1 sp, sp) 
example. Here, the TCCTT path was chosen, and as can be seen, there is little 
difference between the performances of the PRISM and axis-switch codes. The 
HGP program, on the other hand, is clearly the slowest of the three. It is inter- 
esting to note that the HGP/PRISM ratio is smaller for (sp, sp I sp, sp) than for 
(PP I PPh 

The axis-switch technique is not implemented in GAUSSIAN 90 for d shells, 
but it would be expected to perform poorly in the uncontracted example that we 
have selected: Axis-switching is worthwhile only when the degree of contraction 
is sufficiently large. It is particularly interesting to note, however, that HGP is 
considerably faster than is PRISM (which selected the TTTCC path) in the 
(dd I dd) example in Table 11. Again, reference to Table I reveals that this could 
have been predicted on the basis of their relative FLOP counts. In the uncon- 
tracted case, the total FLOP cost is simply the sum of the x ,  y ,  and z parameters, 
which is 23,761 FLOPS for HGP and 39,974 FLOPS for TTTCC. This reveals the ma- 
jor deficiency of the PRISM algorithm: Even those paths that are best suited 
to uncontracted ERI classes (e.g., TTTCC) become increasingly less and less 
competitive with HGP as the ERI angular momentum increases. Thus, although 
TTTCC, os, and HGP are comparable for uncontracted ( p p  I pp) ,  TTTCC and 0s 
are roughly 70% more expensive than is HGP for uncontracted (dd 1 dd). We pro- 
ject that the difference is even larger for uncontracted (ff I ff) classes. 

We are now in a position to examine some timing results on naphthalene-a 
“real” molecule. All C-C and C-H bond lengths, respectively, were 1.4 and 
1.1 A. All angles were 120 degrees. Because it cannot be used in direct SCF calcu- 
lations in GAUSSIAN 90, the axis-switch program could not be fairly compared 
with the HGP and PRISM programs. In Table 111, we present timings for a single 
direct SCF iteration, i.e., the timings are composed of a contribution from 
computing the ERIS and a contribution from assimilating them into Fock ma- 
trices. The relative importance of the assimilation component is greatest 
(25%-30%) when the basis set used is least contracted (3-216) and is negligible 
for strongly contracted basis sets (STO-3~).  The calculations were performed on a 
VAXStation-3100 running VMS. 
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TABLE 111. Comparative timings for first direct SCF cycle on naphthalene.” 

STO-3G 3 - 2 1 ~  6 - 3 1 ~  6-31~* 

HGP 323 445 1104 3246 
PRISM’ 142 349 593 2618 

CPU seconds on a VAXStation-3100 computer (see text for details). 
?he Head-Gordon-Pople method [9] as implemented in GAUSSIAN 90 [12]. 
T h e  present algorithm. 

With its ability to match the performance of the axis-switch method in highly 
contracted ERI classes, PRISM fares best in the STO-3~  calculation where it re- 
quired only 44% of the time needed by HGP. This fraction rises to 54% for 6-316, 
to 81% for 6-31~*, and to 78% for 3-216. The explanation for this trend is two- 
fold: First, weakly contracted basis sets offer PRISM little opportunity to utilize 
paths that are substantially more efficient than is HGP, and, second, the assimila- 
tion phase (which is essentially a constant added to both the PRISM and HGP ERI- 

evaluation times) is most expensive for these same basis sets. 

Conclusions 

The overall performance of the PRISM algorithm is superior to that of the PH 
axis-switch technique (which is poor for weakly contracted ERI classes) and to 
that of the HGP methodology (which is poor for strongly contracted ERI classes). 
PRISM is substantially inferior to HGP; however, for weakly contracted classes of 
high angular momentum, a modified version of PRISM that does not suffer from 
this defect needs to be developed. 
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