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A new gradient-corrected exchange functional (G96) is introduced. While
similar to Becke’s B88 functional, it is much simpler and its potential in finite
systems is asymptotically unbounded. The mean absolute deviations of the B88
and G96 exchange energies from the corresponding Hartree-Fock values for the
atoms H to Ar are 125 and 8.5 mE,, respectively. In combination with the LYP
correlation functional, it yields a density functional (G-LYP) that performs
similarly to B-LYP on the standard G2 benchmark and we infer that the
usefulness of a functional for molecular calculations does not depend critically
on its asymptotic behaviour.

1. Introduction

As an approach to the electronic structure problem, Kohn-Sham density
functional theory (DFT) [1-3] combines the virtues of comparative computational
inexpense with commendable accuracy for a wide range of physically interesting
properties. An intensive research effort has yielded an impressive variety of exchange
and correlation functionals [4-19], some of which have shown considerable promise in
recent comparisons [20-23] between DFT predictions and reliable experimental data
on molecular structure and energetics. Not surprisingly, DFT has been widely
embraced by physicists and chemists but fundamental questions about the origin of its
success remain unanswered [24] ad the trite remark that “DFT gets the right answers
for the wrong reasons’ is not far from the truth. If we are to improve this
unsatisfactory situation, the veil of mystery that envelops modern DFT practice must
be pierced and we propose that Occam’s Razor [25] may be a potent weapon in this
effort.

A major obstacle to progress is the arresting complexity of many of the currently
popular density functions. It is entirely reasonable, and it is good science, to ask
whether or not such baroque tendencies are necessary in order to obtain good
agreement with experiment. In this spirit, we have initiated a minimalist search for
simplicity in DFT. Our goal is the construction of extremely simple functionals that
perform as well as their more complicated brethren when applied to atomic and
molecular problems. For example, in work with Stewart [26], we have recently found
that the Lee—Yang—Parr (LYP) [15, 16] correlation functional is only marginally
superior to the very much simpler Wigner [5] functional buried within it and we have
investigated the Becke—Wigner (B—W) model as an alternative to the more complicated
B-LYP procedure.

In this paper, we turn our attention to the exchange energy. We introduce and
examine a novel functional that, while comparable to the Becke [13] and Perdew—Wang
[18] functionals, enjoys a peerless simplicity of form that may eventually allow it to be
used without resort to the grid-based quadrature that bedevils current DFT practice.
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We conjecture that it is the simplest possible exchange functional that affords a high-
quality theoretical model chemistry.
The original exchange functional of Dirac [4],

ER* = Cx me(r) dr, ()

is intuitively comprehensible and conceptually attractive. However, although the
functional is exact for the homogeneous electron gas, it is insufficiently accurate in
molecular systems to yield an entirely satisfactory theoretical model chemistry. Most
attempts to generalize and improve upon it introduce a gradient-dependent function
g(x) to the integrand, yielding

Ex = J94 P(r)g(x)dr, )

where p(r) is a spindensity and its dimensionless reduced gradient is given by
x = |Vp| p **. All of the exchange functionals that we will consider henceforth are
of form (2) and, for the sake of brevity, we will therefore often discuss a functional
in terms of its g(x).

A number of authors have emphasized the importance of the potential that an
exchange functional yields when applied in the classically forbidden outer regions of
a molecule where the spindensity decays exponentially. Since the density of the
hydrogen atom is exponential

pu(r) = m "exp(—2r), 3)

and its exact exchange potential (which cancels its Coulomb potential) is easily shown
to be

Vit(r) = exp (= 2r) (1 +l) -1 4)
r r

it follows that one can obtain a useful diagnostic gauge of the performance of
functional (2) in classically forbidden regions by comparing (4) with the approximate
exchange potential [27]:

axdig (2 8\dg 8
Vot = ==+ - | =" +— 5
i) 3 dx® (r 3)dx 3x ©)

(where x = 2n'#¢2 ") that results when the density is given by (3).
The spin-polarized Dirac functional is a special case of (2) in which g(x) is constant,

ie.
D3o = = —é i 1/3
gr )= as 2(4n) ’ €
6 1/3
VE:N (V) = — (;) exp (— 2}"/3) (6 b)

In an attempt to correct the tendency of (6a) to underestimate the Hartree—Fock
exchange energy by roughly 10% in molecular systems, Slater [8] and others proposed
that the constant o be increased by such a factor. This approach leads to the famous
X, theory and was a popular choice for many years despite being necessarily inexact
for the homogeneous electron gas.
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By examining the slowly-varyin g infinite electron gas, Sham [7] and Kleinman [10]
were able to derive from first principles the second-order gradient-corrected functional

g7 (x) = a= Bx*, (7a)

V() = VR* (r)— 8n'f Bexp (+2r/3) (%— i) (7b)

where 8= 5(36m)"*” = 0:00189. Moreover, although S71 yields improved energies
over D30, Herman et al. found [6] that replacing B with the semiempirical value
b = 0:0044 is even better. However, the Sham—-Kleinman—Herman functionals have
been criticized for several reasons, the most serious of which is that their potential
(7b) is unbounded for large r.

In recent years, the evolution of improved exchange functionals has been partly
guided by an impressive piece of literature [28] on the scaling and asymptotic
behaviour of the exact functional. This knowledge has been used to infer that g(x)
should reduce to ¢* (x) as x— 0 and that the potential (5) should decay as 1/r as
x— oo. we designate these the ‘Sham-quadratic’ and ‘Coulombic’ asymptotic
properties, respectively, and note that any functional possessing both is likely to
be fairly complicated.

The first functional developed with both of these properties in mind

Bm(x) = Q_L
g 14 6bx sinh™* x

= a— bx*+6b*x'— ..., 8a)
VEs(r) = VR () —r*=0@™), (8b)

was published in 1988 by Becke [13]. He chose the parameter b = 0-0042 to fit the
known Hartree—Fock exchange energies of the noble gas atoms He to Rn and the
similarity of this to the Herman value follows from the similarity between the Taylor
series in (7a) and (8 a). It is sobering to note that, despite being neither Sham-quadratic
nor Coulombic, B88 yields very useful theoretical model chemistries [22] when paired
with competent functionals.

Following Becke’s work, Perdew and Wang constructed another functional

_bx*— (b= B)x* exp (— 1-6455x*) — 10" °x"

PWo,; =
g " (x) 14 6bx sinh™ x—10"°x* /o
= o= Px* = 0:00375x" — ..., ©a)
Vi (r) = Vi (r)— small terms, ©5)

that is also widely used and is frequently referred to as the GGA91 exchange
functional [18]. Although based on B8S, it has been refined in the small- and large-x
limits. In particular, the Gaussian term in the numerator renders it Sham-quadratic
while the x* terms ensure that (9 a) tends to zero in the high-gradient limit. However,
although such modifications produce a functional that is theoretically superior, PW91
is not found in practice (as we will see later) to yield systematically better chemical
predictions. (The referee of this paper has informed us that the 1986 functional of
Perdew [11] is preferable to PW91. Few direct comparisons between P86 and B88 have
appeared in the literature but such work would obviously be valuable.)
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Recently, Gill and Pople found a functional that yields the exact wavefunction and
energy for the hydrogen atom and showed [27] that it is the unique functional of form
(2) to do so. Their functional is complicated and is most conveniently written as

g™ (x) = ﬂiﬁl[U(— 2/3,2,2r) J2 rz(z+2) exp(—20) M(—2/3,2,1)dt

+M(—2/3,2, 2r)Jw ((1+2)exp (—20) U(—2/3,2, t)dt]—g, (10a)
VR = V), (105)

where U and M are confluent hypergeometric functions. It is Coulombic (necessarily)
but not Sham-quadratic. Regrettably, it performs extremely poorly for all but the
simplest of systems and we will not consider it further here.

What, then, can we conclude from the observed performance of the existing
functionals ? The question is a confusing one because B88, which is neither Sham-
quadratic nor Coulombic, performs at least as well as PW91 (which is Sham-quadratic
but otherwise very similar) and very much better than S71 (which is Sham-quadratic)
and GP93 (which is Coulombic and, indeed, exact for the hydrogen atom). An
objective observer must conclude, on the weight of evidence but contrary to
conventional wisdom, that an exchange functional need not necessarily possess the
Sham-quadratic and Coulombic properties in order to perform well. If this is true, it
is frustrating for it tells us only what is not important. If we wish to develop an
improved functional, it would be much more helpful to know what is important.
Nonetheless, if nothing else, it should at least make us receptive to slightly
unconventional suggestions. One follows.

2. A new exchange functional

The functional that this paper introduces is defined by

gGs)«; (x) = q— bxi*/z’ (11 a)

1 5
V& (r) = VR (= 3V2rn'Fhexp (+r/3) (—— 18), (11b)
r

and we will refer to it as G96. We choose the value b = 1/137 to reproduce the
Hartree—-Fock exchange energy for the Ar atom using the HF /6-311 + + G density
[29, 30] and SG-1 grid [31]. Before examining the quantitative performance of the
G96 functional, we note that it is neither Sham-quadratic nor Coulombic but, for the
reasons below, this is unlikely to be important.

g% (x) is not analytic at x = 0 and its second and higher derivatives there are
infinite. Becke contends [13] that this deficiency may be significant but we do not agree.
Indeed, there is evidence that non-analyticity of g(x) at the origin may in fact be
necessary for high accuracy. Not long ago, we showed [27] that there exists a unique
functional of the form (2) that yields the correct Kohn—Sham energy (— 1/2 hartree)
and density (n ' exp (— 2r)) for a hydrogen atom. We were able to construct and plot
the corresponding g(x) and show that it is singular at the origin. This surprising result
is, however, not particularly profound. It simply reflects the fact that the form (2),
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while very attractive from a computational and conceptual viewpoint, is not infinitely
flexible and it shows clearly that, if one wishes to adopt the constraints inherent in (2),
one can not rule out the possibility that the optimal g(x) may behave quite strangely.

The fact that the potential (11b) of G96, like that of S71, is asymptotically
unbounded in the classically forbidden region of a molecule is actually of little
practical significance for it can be seen that, where the potential grows as exp (+7r/3),
the corresponding spindensity decays as exp (— 2r) and annihilates any spurious effects
that might otherwise have arisen.

3. Results and discussion

All of the calculations described below were performed using the Q-Chem program
[32].

Table 1 contains the proper UHF /6-311 + + G exchange energies [24, 29, 30] for
the atoms H to Ar, and the signed differences between these and the improper values
afforded by the Dirac, Sham, Perdew, Becke and G96 functionals when applied non-
self-consistently to the UHF /6-311 + + G densities and integrated using the SG-1 grid
[31].

It has been known for many years that the Dirac functional systematically
underestimates UHF exchange energies and the data in table 1 show this error
decreasing from 14% for H to 8% for Ar. This functional constitutes the exchange
component of the widely used local spin density approximation (LSDA).

The inclusion of a gradient correction for the inhom ogeneity of the electron density
has a marked and beneficial effect. Although the straightforward Sham functional
yields exchange energies that are still too small, the errors are now only 2-3%. Given
the popularity that the LSDA has enjoyed, it is surprising that the Sham functional has
received such scant attention. This may reflect more on early density-functional
programs that on the functional itself’!

The Becke functional is semiempirical in that the value of its b parameter was
chosen to fit, in a least-squares sense, the exchange energies of the six noble gas atoms
from He to Rn. The return for this single degree of ‘ab initio empiricism’, however, is
that it is 1-2 orders of magnitude more accurate than the Sham functional for
predicting atomic exchange energies. Its mean absolute deviation (MAD) from the
UHF value is just 12«5 mE,.

The Perdew—Wang functional is a little more complicated than Becke’s but the
results in table 1 show that it is also somewhat less accurate: for the 18 atoms tested,
its mean absolute deviation from the UHF values is 24 m E},. This is very interesting
PWOI1 was carefully constructed to mimic B88 for intermediate x values but to
correct it elsewhere. It raises the intriguing possibility that, in order to perform well for
finite systems, it may be unimportant, or even undesirable, for an exchange functional
to be Sham-quadratic.

The G96 functional contains a semiempirical parameter chosen to fit the exchange
energy of the Ar atom. The mean absolute deviation of G96 exchange energies from
the UHF values is small, only 85 mE}. That such agreement can be achieved is itself
significant, especially given the functional’s simplicity, non-analyticity and unbounded
potential.

The deviations of the Becke, Perdew and G96 functionals are plotted in figure 1.
The most interesting feature of this figure is the striking similarity between the three
graphs and, in particular, the ‘neon dip’ that they all display. The obvious parallels
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Table 1. Atomic exchange energies (millihartrees) using various functionals.”

Atom E(UHF)®  A(D30)¢  AS7D)?  A(BS8)°  APWI)  A(GI6)®
H —312:32 44.43 7.01 +2.74 +5.58 +1.28
He —102481 141.55 18.71 +0:26 +8.81 —-3.5
Li —1781.03 243.23 4636 +6:01 + 18406 +2.59
Be — 2666417 35430 86402 +9.04 +21.67 +9.02
B —3759.01 46917 12004 +6:71 +21.82 +7.72
C — 5066406 585465 159:09 +5.95 +2324 +6:67
N —6603+54 70525 20384 +9.95 +29.32 +8.43
o) — 8203417 828-59 24070 —8.70 +12:06 —9.09
F —10028-34 950-01 28242 —23.47 — 160 —25.04
Ne —1209893  1073-14 329.95 3113 — 806 — 3663
Na —14017.57 123320 40894 ~10.99 +12:33 —17:38
Mg —15991.69  1382.59 484.66 —5.82 + 15400 —9.65
Al —18079.79 153702 549.52 +1.38 +23.97 —5.42
Si —20293.16 169161 61605 +9.20 +33.42 — 155
P —22641.01 184891 685-11 +19.94 +45.49 +4.36
S 2501977 200571 75024 +20.71 +47.83 +0.78
Cl —2752864 216070 816+57 +22.33 +50.51 —-292
Ar —3018328  2321.83 89142 +31.35 +61:26 —0:67
MAD" — 108746 3720 125 2444 85

“ All energies obtained using the UHF /6-311 + +G density.

® UHF/6-311+ +G exchange energy.

¢ Difference between Ex(UHF) and energy from equation (6 @) (Dirac).

¢ Difference between Ey(UHF) and energy from equation (7a) (Sham).

¢ Difference between Ey(UHF) and energy from equation (8 a) (Becke).

" Difference between Ex(UHF) and energy from equation (9 a) (Perdew—Wang).
¢ Difference betwen Ey(UHF) and energy from equation (11a) (present).

" Mean absolute deviation from E,(UHF).
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Figure 1. Differences between Hartree—Fock atomic exchange energies and those afforded by
the PWO91, B88 and G96 exchange functionals.
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Figure 2. The g™ (x), ¢ (x), g (x), g"V*' (x) and ¢ (x) functions (0 < x < 2).
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Figure 3. The g™ (x), 5" (x), g°® (x), g"V' (x) and g°* (x) functions (0 < x < 40).

between the energies that they yield suggest that the underlying functionals may be
more closely related than a cursory inspection of (8), (9) and (11) would suggest.
Fortunately, since all three are of the form (3), it is easy to compare them by comparing
their respective g(x) functions as in figures 2 and 3.

Because it is Sham-quadratic, PW91 decreases more slowly than B88 for0 < x < 2
but then becomes almost identical to it until x = 10 after which it reaches a minimum
and then increases. Because of its infinite curvature at the origin, G96 decreases more
rapidly initially than B88, but they subsequently intersect twice (at x = 51 and
x =~ 13:2) before the x*/* of G96 eventually prevails over the x/In x of B88. Although
the behaviours of the functionals in the small- and large-x regions have been studied
in detail by asymptotic analysis, the differences between them turn out to be relatively
unimportant. Of much greater significance practically is the striking similarity between
all three functionals in the intermediate-x region, for it is there that their performances
in most chemical applications are determined.

Having identified B88, PW91 and G96 as the most accurate of the functionals
examined, we were interested to compare their strengths and weaknesses when applied
to the prediction of accurately known chemical reaction energetics. In order to do this,
we had to pair each of the exchange functionals with a correlation functional and we
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Table 2. Atomization energies (kcal mol™') from experiment, G-LYP, B-LYP and GGA91.

6-311+G(2df,p) 6-31G(d)
Molecule Expt. G-LYP B-LYP GGA91 G-LYP B-LYP GGA91
H, 1033 10346 103-2 99-1 103+6 10344 995
LiH 56+0 54+6 56:0 52:6 533 550 51+6
BeH 469 543 542 53:2 540 54.1 535
CH 799 80-2 813 815 783 79+6 80-1
CH,(°B)) 17946 1784 179:0 184.3 176+8 1778 1838
CH,('A) 17046 167+4 169-1 170-1 16346 1657 1673
CH, 289.2 287-2 2889 2937 285+7 2881 2938
CH:I 392.5 3871 389-2 3950 3874 3905 3975
NH 79+0 82.8 84.4 847 7948 815 82.1
NH, 1700 174-1 17646 1783 1677 1704 17246
NH, 27647 27646 27944 2831 2670 270-1 2746
OH 101.3 1029 1038 1053 975 984 100-1
OH, 2193 2171 2181 2220 206-0 2071 2114
FH 13542 1344 1344 13646 124.3 1242 126+8
SiH (‘A ) 1444 1432 144-1 1423 1412 1423 1414
SiH,(°B,) 12344 1226 1226 1250 121.1 12144 1245
SiH, 2140 2099 21047 2112 2079 2092 210+7
SiH:I 302-8 29646 2980 2971 2944 2964 2971
PH, 1447 147+4 1485 148.1 14346 1450 1450
PH, 22744 2253 22646 2270 22047 22246 22346
SH; 17342 169+4 1699 1733 1645 1655 1690
CIH 102-2 99-6 995 1023 953 956 982
Li, 240 16-0 204 212 16+0 1948 2044
LiF 1376 1359 13846 139-8 1320 13546 1364
HCCH 3889 384-0 387-6 40044 3783 3828 396-8
H,CCH, 5319 524.8 5289 543.7 5228 5284 544.5
H,CCH, 6663 65346 6583 67544 6550 6618 6804
CN ‘ 17646 18246 1863 19544 1787 18249 1923
HCN 3018 305-0 309-2 319+0 3012 306-0 316+5
CcoO 256-2 2561 2583 268-0 2547 2573 2672
HCO 2703 2761 27846 2894 2746 2780 288<9
H,CO 3572 358-0 360-9 3726 3574 3614 3735
H,COH 4808 474.8 478+4 4922 47042 4753 4897
N; 2251 230-1 2351 24245 22545 23049 23847
H NNH, 405+4 4067 412.8 42449 3949 40147 41447
NO 150-1 1597 1629 1719 15745 1613 1702
O, 1180 1312 1328 1420 1340 1364 1452
HOOH 2523 2553 2581 2683 24842 25147 2620
F, 369 4544 468 52:3 5147 54.2 59-0
CO, 3819 389-6 392.7 4132 3882 392-6 41340
Na, 1646 12-9 17-8 18-8 123 173 1845
Si, 74+0 713 752 7941 7144 725 787
P, 116-1 1183 120-2 124.3 1121 114.1 1182
S, 1007 104+6 10544 114-8 99-0 1002 108+7
Cl, 572 561 565 652 497 50-8 582
NaCl 975 90-4 91.5 96-0 873 888 934
Sio 190-5 1904 1922 19646 18546 187-8 1925
SC 169+5 168-1 1699 179+5 164+7 166+8 176+5
SO 1235 1304 13147 139-8 1238 12546 13344
ClO0 633 71.1 725 80s5 657 6747 753
CIF 60-3 63-8 647 713 612 630 692
Si H, 500-1 48546 4887 49446 4823 48644 4947
CH,Cl1 371-0 363.7 366-1 3793 3632 366+9 380-6
CH;SH 445.1 4352 4382 45248 4325 43649 452.1
HOCI 1563 157+4 159:0 1683 15045 1528 1618

SO 2540 2538 25644 2744 2379 24146 25944
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Table 3. Ionization potentials (eV) from experiment, G-LYP, B-LYP and GGA91.

6-311 4 G(2df,p) 6-31G(d)
Molecule  Expt. G-LYP B-LYP GGA9I G-LYP B-LYP GGA9I
H 13-60 13.57 13.54 13.64 13.53 13.48 13.58
He 2459 24.80 24.79 24.55 24474 24471 24447
Li 539 544 5.52 5460 544 5.52 5461
Be 9.32 884 898 9:07 881 892 9:01
B 830 8.58 862 870 8+40 841 851
C 11:26 11:39 1141 11.57 11:25 11.23 1141
N 1454 1452 1451 14.76 1450 14446 14.71
o) 1361 14:05 1417 14220 13-86 13.93 13:98
F 1742 17:67 1774 17-81 17:26 17.25 17-38
Ne 2156 21469 21471 2181 21417 2110 2128
Na 514 522 5.35 537 5:20 5.33 536
Mg 7465 7445 7463 767 7445 7463 767
Al 598 5466 5487 610 586 586 610
Si 815 794 794 822 794 793 821
P 10-49 10-19 1018 1050 1018 1017 1050
S 10-36 10-37 10-41 10-54 10-31 10-32 1045
Cl 12:97 12-88 12:91 13:07 12:84 12:84 13:03
Ar 15-76 15+60 15:61 15-81 15.58 15:56 15.78
CH, 12:62 12:33 12:38 12:47 12440 1241 12:56
NH, 1018 10-04 10-09 10-22 9469 971 987
OH 1301 13-10 13.18 1326 1276 12.78 12:91
OH, 12:62 1249 12:53 12:66 12:03 12:02 12:20
FH 1604 16:01 16:03 1616 15431 15:26 15446
SiH, 11:00 10-63 10-67 10-79 1074 10-75 10:92
PH 1015 9.98 9.98 10-27 9:97 996 10:26
PH, 9.82 974 9475 10-01 972 972 9:99
PH, 9.87 9466 971 9485 9461 9463 979
SH 10-37 10.27 10-31 10:47 10-21 10-23 10-39
SH, 10-47 10-22 10-25 10-44 1017 1018 10-37
CIH 1275 12:55 12:57 1275 1250 1249 12-70
HCCH 1140 11.08 1112 11:30 10-79 10-79 11:03
H,CCH, 1051 10-23 10-28 10-48 9:97 9.98 10-22
Cco 1401 13-86 13:92 13:97 13.77 13.78 13-86
N, 15-58 15:34 15:37 15448 15.22 15-19 15.34
o, 12:07 12:47 12.48 12:52 12:38 12:33 12:41
P, 10-53 10-12 1013 10-40 1017 10-16 10-46
S, 9.36 926 9.28 9450 936 934 956
cl, 1150 11.05 11.08 11:24 11.15 11-14 11:34
CIF 1266 12:32 12:36 1248 12.13 12:12 12:28
sC 11:33 11.23 11.28 11:39 11:21 11:22 11:36

chose to use LYP with B88 and G96 (giving B-LYP and G-LYP) and the PW91
correlation functional with PW91 (giving GGA91). All calculations were performed
self-consistently [33] and used the SG-1 grid [31].

In tables 2-5, we compare the predictions of G-LYP, B-LYP and GGA91 with
accurate experimental data for the G2 set of molecules [34]. We present results
obtained with both the large 6-311+ G(2df,p) basis set and the smaller 6-31G(d) set.
We expect the former to be close to the basis set limit while the latter are indicative of
the quality that could be anticipated if one wished to apply the functionals to large
systems where a modest basis set would be mandated. MP2 /6-31G(d) geometries were
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Table 4. Electron affinities (eV) from experiment, G-LYP, B-LYP and GGAO91.

6-311 +G(2df,p) 6-31G(d)
Molecule  Expt. G-LYP B-LYP GGA9I G-LYP  B-LYP GGA9I
C 126 129 132 1.57 —-021 —0.28 0:07
CH 124 127 131 1.54 - 0:05 —0e11 021
CH, 065 068 079 0-82 — 064 — 063 — 052
CH, 0-08 —0:06 002 012 — 141 —143 125
CN 3.82 375 3.82 3.91 282 278 295
NH 038 040 050 0+56 —1.28 —129 —1.13
NH, 0-74 065 073 083 - 095 —0:97 —-0.78
NO 002 0:20 026 0+31 —-0.75 — 081 — 069
o) 146 161 170 177 —0:34 —0:37 —019
OH 1-83 1477 1-83 1:93 —0.17 —021 - 001
o, 044 042 052 053 —0.74 —0.77 — 066
F 3.40 3.50 3.56 3.65 0:93 085 1:07
Si 1-385 117 1-19 147 078 0-74 111
SiH 1277 1-10 112 1-39 074 071 1:04
SiH, 1-124 1:00 1:05 1-29 067 0-66 096
SiH, 144 125 133 145 0:97 098 1-16
P 0746 081 0-87 0:93 014 013 028
PH 1:00 095 1:01 111 032 031 050
PH, 126 1:09 1-15 1-29 0+52 050 073
PO 1:09 1:05 1-10 128 033 031 055
S 2:077 2:05 210 222 149 147 1-68
SH 2314 217 222 237 1-64 1-61 1-85
S, 1663 146 151 1-64 121 1:20 140
Cl 3.615 3.54 3.57 3.72 297 294 3.18
Cl 239 270 278 270 261 262 2465

used for all calculations. We note that a major investigation of the B-LYP procedure
has previously been published by Johnson er al. [22]. These authors, however,
confined their attention to the 6-31G(d) basis set and did not present comparisons
of B-LYP with the GGA91 (or G-LYP) procedure. Our results are summarized in
table 6.

Table 2 lists experimental and theoretical atomization energies for 55 small
molecules. In general, the theoretical values follow the pattern G-LYP <« B-LYP <
GGA91 and the tendency of GGA91 to overbind is particularly significant for
unsaturated systems. The fact that G-LYP atomization energies are usually smaller
than those of B-LYP is an asset in the infinite-basis limit (where B-LYP tends to
overbind slightly) but a liability in 6-31G(d) calculations (where errors due to the
functional and basis set largely cancel and B-LYP’s mean error is small). For large-
basis calculations, G-LYP is slightly better than B-LYP overall and both are much
more accurate than GGA91. For small-basis calculations, B-LYP is better than
G-LYP overall and both are more accurate than GGA91.

Table 3 lists experimental and theoretical ionization potentials for 40 atoms and
molecules. In general, the theoretical values follow the pattern G-LYP = B-LYP <«
GGAJY9I1. However, unlike atomization energies, molecular ionization energies are
almost invariably underestimated by B-LYP. Consequently, G-LYP is slightly worse
overall than B-LYP for calculations with the large basis set and slightly better with the
small basis set. Both, however, are much less accurate than GGA91.
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Table 5. Proton affinities (kcal mol™!') from experiment, G-LYP, B-LYP and GGA9I.

6-311 4+ G(2df,p) 6-31G(d)

Molecule  Expt. G-LYP B-LYP GGA9I G-LYP B-LYP GGA9I
H, 100-8 98.8 973 99.2 91.1 90-1 914
HCCH 152:3 1545 1529 1546 157:3 1569 15722
NH, 20245 20243 2004 20147 2087 20747 2083
H,0 165-1 1633 1615 1629 1692 1682 1687
SiH, 1540 155.1 1540 15229 1514 1508 1489
PH, 187-1 1857 18422 1834 1854 1844 1837
H,S 168-8 168+6 167-1 1672 1675 166+7 1665
HCI 1336 133:5 132.1 1330 1302 1296 129:6

Table 6. Mean absolute deviations (kcal mol™") of functionals from experiment.

6-311 +G(2df,p) 6-31G(d)
G-LYP B-LYP GGA9l G-LYP B-LYP GGA9l
Atomization Energies 421 439 897 6-10 5:04 777
lonization Potentials 476 440 3.62 5+86 597 393
Electron Affinities 2.50 2:47 3445 2358 24.16 19443
Proton Affinities 1-13 198 1.75 4:25 4+44 4.80
Overall 3.86 3.87 580 5877 535 606

“ Without inclusion of electron affinity data.

Table 4 lists experimental and theoretical electron affinities for 25 atoms and
molecules. It is well known that most anions cannot be adequately described without
diffuse functions and, as a result, the 6-31G(d) electron affinities are generally much
too low. With the large basis set, the theoretical values invariably follow the pattern
G-LYP <« B-LYP « GGA91 but the B-LYP values are sometimes above, and
sometimes below, experiment. As a result, we find overall that G-LYP and B-LYP are
similar and both are much more accurate than GGA9I.

Table 5 lists experimental and theoretical proton affinities for eight small molecules.
All three functionals perform notably well here. Presumably, this is because, unlike
atomization, ionization and electron addition, protonation is an isogyric process. The
G-LYP affinities are generally slightly larger than those of B-LYP and GGA91 and
this is usually an improvement. Overall, G-LYP is superior to both B-LYP and
GGAUII, especially with the large basis set.

In an attempt to draw the threads of this paper together, we have constructed a
summary of the properties and performance of the six exchange functionals that we
have considered and present it in table 7. Careful inspection of this leads to the
conclusion that correct behaviour of g(x) in the x—» 0 and x— oo limits is neither
necessary nor sufficient to determine whether a functional may be useful in the
prediction of chemical energetics. Of much greater significance is the behaviour in the
intermediate range, say, 2 < x < 10. This is a salutary lesson to any who seek to devise
accurate exchange functionals in the future.
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Table 7. Summary of various exchange functionals.

D30¢ S71® B88° PWI1Y GP93° G96'

Sham-quadratic?® X v X V X X
Intermediate?” X X \/ \/ X \/
Coulombic?’ X X X X v X
Simple?’ v v X X X N
Accurate?* X X \/ \/ X \/

“ Dirac functional, equation (6 a).

® Sham functional, equation (7 a).

¢ Becke functional, equation (8 a).

4 Perdew—Wang functional, equation (9 a).

¢ Gill-Pople functional, equation (10a).

" Present functional, equation (11 a).

¢ Correct in low-gradient limit.

" Accurate for moderate gradients.

 Correct in high-gradient limit.

J Corresponding g(x) is of polynomial form.

¥ Performs well on the G2 dataset when combined with a competent
correlation functional.

4. Conclusions

We have introduced and studied the simple G96 exchange functional given by

3 /2
EQ* = JM (a—JZd_) dr. (12)

137p

A new density-functional procedure, G-LYP, obtained by combining G96 with the
LYP correlation functional, has been applied to the G2 molecular dataset and
compared with the established B-LYP and GGA91 procedures. Atomization energies
from G-LYP are generally slightly lower than those from B-LYP and, as a result,
G-LYPis less prone to the overbinding tendency that characterizes B-LYP. Ionization
potentials from G-LYP are generally lower, and less accurate, than those of B-LYP.
Electron affinities from the two functionals are comparable but the proton affinities
afforded by G-LYP with a large basis set are significantly closer to the experimental
values than those predicted by B-LYP.

Although the exchange potential of G96 is unbounded in an exponential density
and its g(x) is not analytic at x = 0, the results presented here suggest that these
deficiencies may be of little significance for chemical purposes. Indeed, one of the most
important conclusions of the present work is that surprisingly accurate agreement with
experiment can be achieved using an extremely simple exchange functional. In
devising a simple functional with the same predictive power as a more complex one, we
feel (with William of Occam) that progress has been made.

We thank Dr Benny Johnson of Q-Chem Inc. for help in the preparation of this
paper and Dr Terry Adams for his enthusiastic encouragement of this work. This
research was funded in part by New Zealand Lottery Science Grant No. 45088.
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