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Abstract: We report the development of a new standard quadrature grid for DFT calculations. Standard Grid 0 (SG-0)
is designed to be approximately half as large as, and to provide approximately half the accuracy of, the established SG-1
grid. It is based on MultiExp and Lebedev quadrature for radial and angular coordinates, respectively. We find that SG-0
is typically 50% faster than SG-1 for energy, gradient, and hessian calculations for the exchange–correlation energy.
This leads to a 35–38% speedup in the total gradient and hessian computations, and we particularly recommend its use
for preliminary calculations on moderately large biochemical systems. It has been implemented as the default grid for
DFT calculations in the Q-Chem 3.0 package.
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Introduction

The density functional theory (DFT) enjoys a number of signifi-
cant advantages over traditional wave function-based post-Har-
tree–Fock quantum chemical methods: it is conceptually simpler;
it is more easily implemented within software packages; and it is
much less computationally costly. Nonetheless, notwithstanding
the optimistic promises of the Hohenberg–Kohn theorem,1 it also
possesses, at least in its present incarnations, several well-docu-
mented and fundamental deficiencies. First and foremost, it does
not present a well-defined hierarchy of progressively more accu-
rate approximations that lead, in principle, to the exact solution of
the Schrödinger equation.2 Second, most popular versions include
an improper energy contribution from the self-repulsion of elec-
trons, leading to the insidious “self-interaction error” that plagues
the application of DFT to systems with stretched or dissociating
bonds.3 Third, its energy expression contains a term (the ex-
change–correlation contribution) which involves an integral that
normally cannot be evaluated in closed form and must be esti-
mated by an approximate quadrature. The canonical example of
this third weakness is the Dirac–Slater exchange energy, which is
proportional to the integral over all space of the 4/3 power of the
electron density.4

There have been a number of attempts to avoid the quadrature
problem,5–8 and the best of these proceed by expanding the prob-
lematic integral in an auxiliary basis set. However, this tactic is
less progressive than it appears because, in the final analysis, it
only replaces the task of choosing optimal grid points with the task

of selecting optimal auxiliary basis functions. Indeed, it is not
difficult to show that such an expansion is mathematically equiv-
alent to a quadrature, albeit in a different space. Moreover, it is
found that one needs large auxiliary bases, increasing the compu-
tational expense and reducing the allure of such approaches. As a
result, the overwhelming majority of contemporary DFT calcula-
tions continue to depend upon explicit quadrature.

Other groups, resigned to the inevitability of numerical inte-
gration but seeking to work optimally within that framework, have
sought highly efficient quadrature methods, that is, ones that obtain
high accuracy from relatively few grid points.9–18 Most of these
can be classified as either “standard” models in which the grid
points and weights are known beforehand,9–16 or “adaptive”
schemes in which points and weights are chosen dynamically as
the integrand is explored.17,18

More than a decade ago, we introduced SG-1, a standard grid
that aimed to yield moderately accurate results at a low computa-
tional cost.11 It was designed to produce exchange–correlation
energies with a computational effort comparable to that required to
calculate the Coulomb energy using the linear-scaling Continuous
Fast Multipole Method (CFMM)19 and includes approximately
3700 grid points per atom. Since that time, SG-1 has been widely
used and is now established as a useful tool for preliminary
explorations of potential energy surfaces. However, subsequent
advances in the treatment of the Coulomb energy, principally the
Fourier Transform Coulomb (FTC) method of Fusti-Molnar and
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coworkers,20 have again shifted the balance, and there is now a
need for a standard grid of approximately half the size of SG-1.

Increasing computational interest in large biochemical systems
also necessitates the development of efficient and well-docu-
mented standard quadratures and, although more aggressively
pruned grids are now available in some quantum chemical pack-
ages, their precise definitions and error analyses have not been
published. To fill this gap, we have developed a new grid (SG-0)
whose construction and validation are described here.

Radial and Angular Quadratures

Because of the presence of cusps in the electron density at each of
a molecule’s nuclei,21 quadrature in Cartesian coordinates is gen-
erally not recommended for computing molecular integrals. In-
stead, it is preferable to adopt the Becke partitioning scheme,9

wherein a molecular integral is reduced to a sum of atomic inte-
grals, each of which is evaluated by quadrature in spherical polar
coordinates. To approximate such an integral
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it is common to employ a product of radial and angular quadra-
tures, viz:
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in which Nr and N� are the numbers of radial and angular nodes,
respectively, and wr

i and w�
j are the radial and angular weights,

respectively.
Although Gauss–Laguerre and Gauss–Hermite quadratures are

obvious choices for the radial integration over [0,�), Treutler and
Ahlrichs argue12 that these are nonoptimal because “the shell
structures of atoms implies contributions of exponentials with a
variety of orbital exponents.” Instead, a number of schemes have
been proposed to map the radial interval onto a finite one, usually
[0,1], and then apply an appropriate quadrature. In 1993, Gill et al.
chose to base SG-1 on the Euler-Maclaurin radial grid,10 but it is
has been argued subsequently that the latter is not as effective as
some other grids, including those of Becke,9 Treutler and Ahl-
richs,12 and Mura and Knowles.13 In 2003, we introduced a new
radial quadrature15 that combines the logarithmic transformation

r � � Rlnx (3)
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to yield the multi-exponential (MultiExp) grid

ri � � Rlnxi (6)
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xi
�R3. (7)

By construction, MultiExp integrates certain linear combina-
tions of exponentials exactly and, for this reason, appears partic-
ularly well suited to atomic quadrature. Its performance in evalu-
ating exchange–correlation integrals in DFT calculations was
studied by us15 and in a recent review by El-Sherbiny and
Poirier.16

For the angular subintegration, separate � and � quadratures
are possible but are generally less efficient22 than direct quadrature
on the surface of a sphere23–25 and Koch and Holthausen26 have
stated that “there seems to be a certain consensus that the so-called
Lebedev grids offer the best value for money.” A Lebedev grid of
degree l exactly integrates all spherical harmonics of degree l or
less and, in this sense, is a two-dimensional analog of the more
familiar Gauss–Legendre grid in one dimension. Lebedev23 orig-
inally published grids up to l � 53 and, later, Delley27 published
grids up to l � 59. More recently, Lebedev and Laikov have
extended this work as far as the l � 131 grid, which consists of
5810 points.25 Fortunately, such high-order quadratures are not
necessary for our purposes and SG-0 utilizes only the 170-point
(l � 21) grid and its smaller cousins. For benchmarking, we have
used the 1202-point (l � 59) grid.

Benchmarks and Grid Optimization

In this section, we discuss the platforms, programs, and theoretical
levels used in this work, the training molecule sets and bench-
marks, the scale factors used in the MultiExp grid and, finally, the
procedure for the construction of SG-0.

Hardware, Software and Theoretical Level

Molecular energies were calculated at the B-LYP/6-31G(d) level
using geometries optimized at the MP2/6-31G(d) level. The struc-
tural optimizations and vibrational frequency calculations dis-
cussed later were also performed at the B-LYP/6-31G(d) level. All
quantum chemical calculations in this work were carried out by a
modified version of the Q-Chem 2.1 package28 on various plat-
forms, including a 152-node linux-PC cluster, in which each node
contains a 2.66 GHz Intel-P4 processor, a Linux-PC workstation
with dual 1.7-GHz Intel-P4 processors, and an Apple PowerMac
workstation with dual 2.0-GHz G5 processors.

Training Molecule Sets

To ensure that our grid performs well in a variety of chemically
important situations, our training set is biased toward compounds
that are rich in the four most important elements, viz. H, C, N, and
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O. The training set for carbon is the largest, comprising 113
species. Analogous sets for hydrogen, nitrogen, and oxygen con-
tained 45, 33, and 35 species, respectively. For the other elements
studied in this work, the training sets comprise up to 21 species.
The training sets were designed to include each atom in a variety
of chemical environments. For example, NaF, Na2 and KNa are
present in the training set for sodium, for these contain sodium
atoms that are ionically positive, covalently neutral, and ionically
negative, respectively. The molecules in a training set were se-
lected from a pool consisting of the G2 and G3 molecules,29,30 as
well as some simple inorganic molecules containing second-row
elements. For brevity, lists of these species are not given here, but
they can be obtained in electronic format from our Web page.31

Benchmarks

Martin et al.32 have proposed that the combination of the 99-point
Euler–Maclaurin radial grid and the 974-point Lebedev angular
grid, viz. EML(99,974), yields results with minimal grid error but
with an “unacceptably high premium in terms of CPU time” for
routine calculations. In the present work, however, an even larger
grid, EML(100,1202), was employed to obtain benchmark “exact”
results.

During the optimization of the SG-0 grid for a given atom, the
EML(100,1202) grid was used on all other atoms. By comparing
such calculations with those in which the EML(100,1202) grid was
used on all atoms, we were able to calculate absolute atomization
energy errors and the mean �E of these errors across a training set
is used to measure the overall error associated with the SG-0 grid
for that atom.

Radial Scale Factors

Each of the radial grids discussed above is completely defined by
two parameters, the number of grid points Nr and the scale factor
R, and the quadrature accuracy depends upon both of these. We
have found that R is particularly important in the MultiExp grid
and we have optimized this carefully for each atom.

The mean absolute atomization energy error �E of an element
can be calculated over a range of R values and it is sometimes
useful to graph these. Such profiles for hydrogen, carbon, nitrogen,
and oxygen are shown in Figure 1 and reveal that �E oscillates
when R is too small or too large, but that the amplitudes of these
oscillations diminish as N increases. Such oscillations have been
noted by other researchers,12,13 and Mura and Knowles argue that
they arise for small R because the resulting grids are not suffi-
ciently diffuse to treat the outer regions of the electron density.13

Treutler and Ahlrichs suggest that the oscillations when R is large
arise from the close approach of the grid points to a neighboring
nucleus.12 Mura and Knowles also propose that the amplitudes of
these oscillations can be used as an indicator of the inherent
numerical inaccuracy of the radial grids. It therefore follows that
an optimal radial grid will have an R value within the range where
both the frequency and the amplitudes are small. We adopted this
idea to obtain optimal R values for SG-0.

Figure 1 shows that the frequencies and amplitudes of the �E
values for the 20-, 23-, 25-, and 27-point grids decrease rapidly in the
range of 1.1 � R � 1.6 for carbon and, on this basis, the 23-point grid
with R � 1.2 was adopted for this element. Other elements were

examined in the same way and it was found that a 23-point grid was
satisfactory for H to F but that a 26-point grid was required for Na to
Cl. The associated R values are given in Table 1.

Our “parent grids” were obtained by combining these radial
grids with the 170-point Lebedev angular grid. These can be
abbreviated as ML(23,170) for first-row atoms and ML(26,170)
for the second row elements.

Grid Optimization

As discussed above, our target was that SG-0 should be roughly
half as large as SG-1 (i.e., about 1500 grid points per atom) but
somewhat less accurate than SG-1 (i.e., yielding roughly double
the SG-1 grid error). However, when we optimized the grid to
achieve the first criterion, it was not always possible to satisfy the
second.

In SG-1, an atom is partitioned into five radial zones and
different angular grid is applied within each of these. This zoning
approach was not satisfactory, however, for SG-0 because the
MultiExp radial nodes are distributed very differently from those
in the Euler–Maclaurin scheme.15 Finally, we decided to select the
angular grid independently for each radial node. To optimize the
SG-0 grid for an element, we therefore began with the parent grid
and then progressively pruned the angular grid at each radial point,
while monitoring �E to ensure that its change was acceptably
small. Proceeding in this way, we found that we could prune the
innermost and outermost angular grids aggressively but that rela-
tively modest pruning (if any) was possible for radial points in the
valence region of the atom. The final result was a grid that was
qualitatively similar to SG-1 but in which the pruning process was
more highly resolved.

Standard Grid 0

In this section, we first give precise definitions of the SG-0 grids
obtained above. We then assess the accuracy of the new quadrature
for predicting atomization energies, structures, and vibrational
frequencies. Finally, we assess the computational time saving by
this new scheme.

Definition

The SG-0 grid for each of the first- and second-row elements
studied is given in Table 1. Each grid is defined by the number Nr

of radial grid points, the radial scale factor R, and the number of
angular grid points at each of the radial points. The total number
Ntot of grid points on each atom is also listed and compared with
the analogous value for the SG-1 grid. The SG-0 grid for any
element not listed in Table 1 is defined to be the same as the SG-1
grid for that element.

In the second column of Table 1, the notation xy indicates that
the x-point Lebedev grid is used at y successive radial points. For
example, the SG-0 grid for the hydrogen atom has 23 radial points
and the configuration 66 183 261 381 741 1101 1461 861 501 381 181

indicates that a six-point Lebedev angular grid is used at each of
the six innermost radial points, an 18-point angular grid at each of
the next three radial points, followed by a single 26-point grid, a
single 38-point grid, and so forth.
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Table 1 indicates that the SG-1 grid utilizes roughly 3800
points per atom and that SG-0 is about 40% as large. However,
because of various cutoff strategies employed within the Q-

Chem program, the effective size of the SG-1 is only about
2800 and the practical reduction in moving to SG-0 is dimin-
ished accordingly.

Figure 1. Variation of �E with R for (a) hydrogen, (b) carbon, (c) nitrogen, and (d) oxygen.

Table 1. Lebedev Partition, Number Ntot of Radial Points and Scale Factor R in the SG-0 Grid.

Element Lebedev partition N R

Ntot

SG-0 SG-1

H 66, 183, 261, 381, 741, 1101, 1466, 861, 501, 381, 181 23 1.30 1406 3752
Li 66, 183, 261, 381, 741, 1101, 1466, 861, 501, 381, 181 23 1.95 1406 3816
Be 64, 182, 261, 382, 741, 861, 1102, 1465, 501, 381, 181, 62 23 2.20 1390 3816
B 64, 264, 383, 863, 1466, 381, 62 23 1.45 1426 3816
C 66, 182, 261, 382, 502, 861, 1101, 1461, 1702, 1462, 861, 381, 181 23 1.20 1390 3816
N 66, 183, 261, 382, 742, 1101, 1702, 1463, 861, 502 23 1.10 1414 3816
O 65, 181, 262, 381, 504, 861, 1105, 861, 501, 381, 61 23 1.10 1154 3816
F 64, 382, 504, 742, 1102, 1462, 1102, 863, 501, 61 23 1.20 1494 3816
Na 66, 182, 263, 381, 502, 1108, 742, 62 26 2.30 1328 3760
Mg 65, 182, 262, 382, 502, 741, 1102, 1464, 1101, 861, 382, 181, 61 26 2.20 1492 3760
Al 66, 182, 261, 382, 502, 741, 861, 1462, 1702, 1102, 861, 741, 261, 181, 61 26 2.10 1496 3760
Si 65, 184, 384, 503, 741, 1102, 1461, 1703, 861, 501, 61 26 1.30 1496 3760
P 65, 184, 384, 503, 741, 1102, 1461, 1703, 861, 501, 61 26 1.30 1496 3760
S 64, 181, 268, 382, 501, 742, 1101, 1703, 1461, 1101, 501, 61 26 1.10 1456 3760
Cl 64, 187, 262, 382, 501, 741, 1102, 1703, 1461, 1101, 861, 61 26 1.45 1480 3760

The total number Ntot of grid points in SG-0 and SG-1 are included for comparison.
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Table 2. Total Energies and Atomization Energiesa Calculated Using Various Gridsb.

Molecule

Total energy Atomization energy

EML(100,1202) SG-1 SG-0 EML(100,1202) SG-1 SG-0

H �0.495446 0 0 — — —
Li �7.480142 0 �9 — — —
Be �14.656321 �1 45 — — —
B �24.641275 5 167 — — —
C �37.832018 1 187 — — —
N �54.568401 0 216 — — —
O �75.046960 14 �33 — — —
F �99.702142 14 �1663 — — —
Na �162.266114 0 4377 — — —
Mg �200.065580 �48 2338 — — —
Al �242.353526 13 �1636 — — —
Si �289.355676 18 190 — — —
P �341.239900 12 5235 — — —
S �398.087008 15 �523 — — —
Cl �460.117577 11 7077 — — —
LiH �8.066114 �3 12 0.090525 3 �21
BeH �15.242333 �5 38 0.090565 5 8
CH �38.460522 �5 204 0.133058 6 �17
CH2 (3B1) �39.122778 �2 183 0.299868 3 5
CH2 (1A1) �39.102989 �7 163 0.280078 8 24
CH3 �39.805124 �2 167 0.486767 3 20
CH4 �40.478844 �52 166 0.665041 53 21
NH �55.200913 0 214 0.137067 �1 2
NH2 �55.849260 7 220 0.289967 �8 �5
NH3 �56.518219 9 166 0.463480 �10 50
OH �75.707277 10 �71 0.164871 4 39
H2O �76.388313 9 7 0.350460 5 �40
HF �100.404438 3 �1595 0.206850 11 �68
SiH2 (3B1) �290.551688 �7 138 0.205120 25 52
SiH2 (1A1) �290.584774 70 188 0.238205 �52 2
SiH3 �291.195812 67 143 0.353798 �50 47
SiH4 �291.839765 152 401 0.502304 �135 �211
PH2 �342.474988 97 5347 0.244195 �85 �112
PH3 �343.104301 18 5202 0.378062 �6 34
H2S �399.356293 �48 �652 0.278393 63 129
HCl �460.771784 �29 6972 0.158761 40 104
Li2 �14.992518 �1 �28 0.032234 1 11
LiF �107.400576 124 �1747 0.218292 �110 76
HCCH �77.291225 �5 418 0.636297 7 �43
H2CCH2 �78.536820 13 517 0.890999 �11 �143
H3CCH3 �79.762628 23 342 1.125915 �21 33
CN (2	g) �92.695865 �8 395 0.295446 8 8
HCN �93.399585 �7 428 0.503720 7 �25
CO �113.293977 �10 213 0.414999 25 �59
HCO �113.830201 �6 171 0.455776 21 �16
H2CO �114.471886 �1 218 0.602016 16 �63
CH3OH �115.667550 15 205 0.806787 0 �51
N2 �109.510299 �9 374 0.373498 7 57
H2NNH2 �111.810636 �1 373 0.692050 �1 58
NO (2
) �129.876874 �4 168 0.261514 17 15
O2 �150.315376 �10 �58 0.221456 38 �7
HOOH �151.512133 �1 �82 0.427320 28 17
F2 �199.493140 33 �3351 0.088856 �4 25
CO2 �188.562994 �7 277 0.637056 36 �155
Na2 �324.560062 �10 8848 0.027833 10 �94
Si2 �578.824880 46 322 0.113528 �11 58
P2 �682.663466 57 10498 0.183665 �33 �27
S2 �796.335459 81 �1252 0.161442 �50 206
Cl2 �920.317577 239 14075 0.082424 �217 77
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It is interesting to note that, whereas most of the elements
require at least one 146-point or 170-point angular grid, oxygen
and sodium require nothing larger than the 110-point grid. The
reason for this economy is not entirely clear to us but it suggests
that, in molecular environments, the electron density of around
these atoms tends to be more spherical than it is around other
atoms.

Accuracy

Atomization Energies

Table 2 reports B-LYP/6-31G(d)//MP2/6-31G(d) total energies
and atomization energies for 67 molecules, taken mainly from the
G2 set.28 In each case, the energies were computed using the large
EML(100,1202) grid, SG-1 and SG-0. By comparing these results
and assuming that EML(100,1202) gives negligible grid error, we
can assess the SG-1 and SG-0 grid errors.

It is clear from Table 2 that the SG-0 total energies are very
different from the SG-1 and EML(100,1202) energies, but that the
errors in SG-0 atomization energies are comparable to the corre-
sponding SG-1 values. This suggests that most of the SG-0 grid
error in total energies comes from the atomic core regions and that,
to a large extent, these “core” errors cancel out in the calculation
of atomization energies. The mean absolute deviation (MAD) of

the SG-1 and SG-0 atomization energies are 47 and 72 �Eh,
respectively, indicating that the SG-0 error is typically less than
twice the SG-1 error. The maximum absolute errors for SG-1 and
SG-0 are 330 and 320 �Eh, respectively.

Isomerization energies for n-butane 3 iso-butane and n-pen-
tane3 neo-pentane are good test cases for grid development. The
energies (according to DFT) are only roughly 1 kcal/mol but,
because the isomers’ shapes are very different, the predicted en-
ergies are sensitive to grid deficiencies. Using the data in Table 2,
the isomerization energies for the butane and pentane pairs are
calculated to be 504 and 362 �Eh, respectively. SG-1 overesti-
mates these by 1 and 221 �Eh, respectively, and SG-0 overesti-
mates them by 139 and 75 �Eh, respectively. The SG-0 errors are
comparable with those of SG-1, suggesting that SG-0 should be
useful for calculations of this type.

Optimized Structural Parameters

To assess the grid error in structure optimization, we have studied 45
small molecules with a total of 55 bond lengths, 19 bond angles, and
2 dihedral angles. These were optimized at the B-LYP/6-31G(d) level,
and a selection of the resulting structural parameters are shown in
Table 3. The full set is available as Supplementary Data.31

Compared with EML(100,1202) bond lengths, the maximum
absolute deviation (MAX) in SG-1 is 0.00362 Å (MgOF bond

Table 2. (Continued)

Molecule

Total energy Atomization energy

EML(100,1202) SG-1 SG-0 EML(100,1202) SG-1 SG-0

NaCl �622.526172 260 11482 0.142482 �249 �30
SiO �364.704783 6 �51 0.302147 25 208
CS �436.187644 �9 �254 0.268618 25 �82
SO �473.336780 �37 �748 0.202812 66 192
ClO �535.274125 �1 7014 0.109589 26 30
ClF �559.922265 222 5733 0.102546 �197 �320
H3SiSiH3 �582.506367 170 377 0.822337 �135 3
CH3Cl �500.057068 22 7174 0.621135 �10 89
CH3SH �438.641366 �43 �395 0.740555 60 59
HOCl �535.916640 170 7277 0.256657 �145 �234
SO2 �548.573198 102 �719 0.392270 �59 131
MgH2 �201.221105 �22 2289 0.164633 �26 49
MgF2 �399.860013 310 �740 0.390149 �330 �248
BH3 �26.578756 0 162 0.451142 5 5
BF3 �324.513322 35 �4765 0.765621 13 �57
BCl3 �1405.491583 44 21506 0.497578 �6 �111
AIH3 �244.169202 �63 �1676 0.329337 76 40
AIF3 �542.128541 �60 �6531 0.668589 116 �94
AlCl3 �1623.156332 93 19655 0.450077 �46 �62
n-C4H10 �158.333588 �1 911 2.051055 4 �162
i-C4H10 �158.334092 1 771 2.051559 3 �23
n-C5H12 �197.618973 87 842 2.513529 �82 94
neo-C5H12 �197.619335 �134 767 2.513891 139 169
Maximum absolute error 310 21506 330 320
Mean error 30 1776 �16 �5
Mean absolute error 49 2514 47 72

aCalculated at the B-LYP/6-31G(d) level, and based on the geometry optimized at the MP2/6-31G(d) level. Energies
calculated using EML(100,1202) are in hartree; others are in microhartree relative to EML(100,1202).
bEML(Nr,N�) is an Euler–Maclaurin–Lebedev grid with Nr radial and N� angular points.
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Table 3. The Grid Errors Associated with SG-1 and SG-0 in Geometric Parameters That Optimized at the
B-LYP/6-31G(d) Level.

Molecule Point Groupa EML(100,1202) SG-1b SG-0b

H2 D�h

r(HH) 0.74802 �0.00002 0.00009
Li2 D�h

r(LiLi) 2.72808 0.00053 0.00148
BeH C�v

r(BeH) 1.35542 �0.00020 �0.00007
BH3 D3h

r(BH) 1.19995 �0.00001 0.00002
H3CCH3 D3d

r(CC) 1.34100 �0.00001 �0.00098
r(CH) 1.09483 0.00005 0.00009
a(HCH) 116.23 �0.01 �0.12

N2 D�h

r(NN) 1.11812 0.00000 �0.00011
O2 D�h

r(OO) 1.23949 0.00017 0.00036
F2 D�h

r(FF) 1.43370 0.00016 �0.00091
Na2 D�h

r(NaNa) 3.04816 0.00134 �0.01130
MgF2 D�h

r(MgF) 1.75086 �0.00362 �0.00387
AlH3 D3h

r(AlH) 1.59797 0.00006 �0.00064
Si2 D�h

r(SiSi) 2.32206 0.00104 �0.00499
P2 D�h

r(PP) 1.92919 0.00040 0.00146
S2 D�h

r(SS) 1.95668 �0.00004 �0.00083
Cl2 D�h

r(ClCl) 2.07628 0.00268 0.00268
SiH2 (3B1) C2v

r(SiH) 1.50309 0.00100 0.00004
r(HSiH) 118.22 �0.05 �0.33

H3COH Cs

(Ha in-plane, Hb out-of-plane)
r(CO) 1.43474 0.00274 0.00355
r(CHa) 1.10098 �0.00061 �0.00090
r(CHb) 1.10981 �0.00068 �0.00057
r(OH) 0.98013 0.00020 0.00003
a(OCHa) 106.40 0.01 0.11
a(COH) 106.85 �0.02 �0.25
a(HbCHb) 108.30 �0.23 �0.07

HCO Cs

r(CO) 1.19578 �0.00005 �0.00001
r(CH) 1.14080 �0.00011 �0.00036
a(HCO) 122.92 �0.01 �0.11

H2NNH2 C2

r(NN) 1.46237 0.00028 �0.00088
r(NHb) 1.03330 �0.00001 0.00001
r(NHa) 1.02765 0.00001 0.00011
a(NNHb) 111.06 0.02 0.09
a(NNHa) 105.48 0.00 0.00
a(HaNHb) 105.68 �0.02 0.09
d(HaNNHb) �90.39 �0.26 �0.51

HOOH C2

r(OO) 1.49390 0.00012 �0.00034
r(OH) 0.98554 �0.00008 0.00017
a(OOH) 98.47 0.00 0.11
d(HOOH) 120.39 0.11 �4.07

Bond distance in angstroms, bond and dihedral angles in degrees.
aSymmetry constrains were turned off in the calculations at the B-LYP/6-31G(d) level.
bQuantities calculated by the SG-1 and SG-0 quadratures are given relative to EML(100,1202) values.
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Table 4. Frequencies (in cm�) Calculated at the B-LYP/6-31G(d) Level, Using the EML(100,1202), SG-1
and SG-0 Quadratures, and the Corresponding Zero Point Energy (ZPE, in �hartree)a

Molecule EML (100,1202) SG-1b SG-0b

H2 (D�,h) 	g 4373.6 0.8 �7.9
ZPE 9963 2 �19

Li2 (D�,h) 	g 331.7 1.1 0.9
ZPE 755 3 0

BH3 (D3h) A1� 2540.5 �2.5 �1.4
A2� 1141.2 1.2 0.8
E� 2669.7 �2.3 (1) �1.1 (1)

1185.5 0.6 (1) 0.7 (8)
ZPE 25954 �11 8

HCCH (D�,hh) 	g 3459.1 0.1 1.5
2020.9 0.2 0.2

	k 3363.9 0.1 1.7
g 420.7 2.2 �13.9
u 742.6 1.5 �9.5

ZPE 25448 18 �116
N2 (D�,hh) 	g 2336.4 3.5 3.6

ZPE 5323 8 0
O2 (D�,hh) 	g 1516.6 �0.8 2.5

ZPE 3455 �2 8
F2 (D�,hh) 	g 988.0 �5.3 �6.5

ZPE 2250 �11 �3
Na2 (D�,hh) 	g 153.8 �12.9 �0.1

ZPE 351 �29 29
MgF2 (D�,hh) 	g 569.1 10.6 3.7

	u 898.7 13.8 2.2
u 134.4 �18.8 �28.3

ZPE 3957 �30 �86
AlH3 (D3h) A1� 1878.3 24.2 1.9

A2� 686.4 0.7 3.5
E� 1897.3 21.9 (3) �1.0 (1)

767.1 �0.7 (1) �1.5 (19)
ZPE 17982 153 �153

Si2 (D�,hh) 	g 453.9 5.6 9.9
ZPE 1034 13 10

P2 (D�,hh) 	g 750.4 �7.5 13.4
ZPE 1710 �18 48

S2 (D�,hh) 	g 652.1 �11.8 10.4
ZPE 1485 �27 51

Cl2 (D�,hh) 	g 481.8 �10.2 11.6
ZPE 1098 �24 49

SiH2 (1A1) (C2v) A1 1968.3 24.1 80.9
1009.6 �16.3 �4.0

B2 1974.9 29.3 76.7
ZPE 11283 84 266

PH2 (C2v) A1 2284.1 �65.0 �80.4
1119.8 �19.9 �27.2

B2 2298.6 �65.3 �71.1
ZPE 12991 �343 �64

H2S (C2v) A1 2586.0 76.9 36.8
1214.1 1.1 4.4

B2 2608.3 67.7 25.6
ZPE 14599 333 �180

aQuantities calculated using SG-1 and SG-0 are given relative to EML(100,1202) values.
bWhen the integration grid is small, degenerate modes in nonabelian molecules split slightly; comparison made
in the table was based on their average values. Differences with magnitude larger than 1 cm�1 are given in
parentheses.
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length in MgF2) and the mean absolute deviation (MAD) of all the
bond lengths is 0.00038 Å. For SG-0, the MAX is 0.01130 Å
(NaONa distance in Na2) and the MAD is 0.00074 Å.

Compared with EML(100,1202) bond angles, the MAX in
SG-1 is 0.09° (�HbOCOHb in H3COH) and the MAD is 0.02°.
For SG-0, the MAX is 0.33° (�HOSiOH in 3B1 SiH2) and the
MAD is 0.11°.

The SG-0 error (4°) for the dihedral angle in HOOH is disap-
pointing, but the potential energy surface is very flat in this
dimension and acute sensitivity to the quality of the quadrature
should be expected.

Harmonic Vibrational Frequencies

Using the optimized geometries discussed above, 144 harmonic
vibrational frequencies have been calculated at the same theoret-
ical level. A selection of these frequencies and the corresponding
zero-point energies are given in Table 4. The full set is available
as Supplementary Data.31 We note that, for molecules that possess
nonabelian symmetry (e.g., a threefold rotation axis), the use of
Lebedev grids (which possess octahedral symmetry) lifts the de-
generacy of E- and T-type vibrations.11 When this occurs, we have
used the average value for comparisons. When the range of for-
mally degenerate modes exceeds 1 cm�1, the difference is given in
parentheses next to the average value.

Within the vibrational frequencies, for SG-1, the MAX is 76.9
cm�1 (lowest A1 mode in H2S) and the MAD is 6.2 cm�1. For
SG-0, the MAX is 80.9 cm�1 (the lowest A1 mode in 1A1 SiH2)
and the MAD is 7.8 cm�1. Within the zero-point energies, for
SG-1, the MAX is 343 �Eh (for PH2) and the MAD is 38 �Eh. For
SG-0, the MAX is 266 �Eh (for 1A1 SiH2) and the MAD is 45 �Eh.

Summary

The SG-0 grid appears capable of yielding a variety of physical
quantities with tolerably small grid error. With the exception of
bond angles, the SG-0 mean absolute deviation values are less than
the twice the corresponding SG-1 values. Given that the SG-0 grid
is only about half the size of the SG-1 grid, such increases in grid
error are reasonable and support the use of SG-0 in production
DFT calculations.

Computation Time

To assess the practical cost of the SG-0 grid, we have compared
B-LYP/6-31G(d) computation times when the SG-0 and SG-1
grids are used for a set of 20 amino acids. The molecular structures
were taken from the database in the Spartan package and the
calculations were performed on a 2-GHz dual-processor Power
Macintosh under OSX version 10.4 operating system.

Table 5. CPU Time (in Seconds) for the Exchange–Correlation Energy Gradient and Hessian Calculations
[B-LYP/6-31G(d)] for Amino Acids, as Well as the Total Number of Grid Points Used in SG-1 and SG-0.

Species

Ntot XC Gradienta XC Hessiana

SG-1 SG-0 SG-1 SG-0 SG-1 SG-0

Gly 25338 12378 3 (4) 1 (3) 29 (172) 14 (102)
Ala 33734 16580 5 (7) 3 (5) 65 (450) 32 (270)
Val 50526 24984 14 (19) 7 (12) 218 (1835) 110 (1124)
Leu 58922 29186 18 (25) 9 (16) 339 (2909) 172 (1794)
Ile 58922 29186 18 (25) 9 (16) 343 (2935) 173 (1806)
Ser 36604 17734 7 (11) 4 (7) 92 (716) 46 (438)
Thr 45000 21936 12 (16) 6 (10) 174 (1415) 85 (846)
Cys 36462 18036 8 (12) 4 (8) 94 (763) 47 (479)
Met 53254 26440 15 (23) 7 (15) 240 (2095) 121 (1312)
Asp 42258 20278 12 (18) 6 (12) 162 (1466) 80 (906)
Asn 45064 21944 13 (19) 7 (12) 194 (1690) 97 (1047)
Glu 50654 24480 16 (23) 8 (15) 237 (2170) 117 (1339)
Gln 53460 26146 16 (23) 8 (15) 266 (2392) 132 (1480)
Arg 70338 34834 27 (39) 14 (26) 539 (5181) 275 (3200)
Lys 64598 32006 19 (27) 10 (17) 378 (3225) 193 (1983)
His 53438 26390 18 (26) 9 (17) 290 (2855) 148 (1808)
Phe 61662 30544 25 (36) 13 (24) 434 (4478) 221 (2848)
Tyr 64532 31698 28 (40) 14 (26) 484 (5197) 249 (3342)
Trp 72906 36144 37 (54) 19 (36) 685 (8212) 353 (5341)
Pro 44914 22172 11 (16) 6 (10) 173 (1411) 86 (863)
Average percentage of grid-size reduction in SG-0 � 51%
Average percentage CPU time saving:

XC Gradientb � 50 % (35%)
XC Hessianb � 50% (38%)

aTotal gradient and hessian times are given inside parentheses.
bTime saving for total gradient and hessian are given inside parentheses.
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Table 5 compares SG-1 and SG-0 on the basis of the total
number of grid points, the cost of a geometry optimizations and the
cost of a frequency calculation. On average, the SG-0 grid is
almost exactly half the size of the SG-1 grid and this leads to a
50% speedup for the computations of the gradient and hessian of
exchange–correlation energy, and a 35 and 38% speedup in the
total gradient and hessian computations, respectively.

Conclusions

By combining a sophisticated pruning technique with our Mul-
tiExp quadrature, we have constructed a new standard grid, SG-0,
for DFT calculations. It consists of approximately 1500 grid points
per first- or second-row atom, which is about half the size of the
SG-1 grid, and generally yield grid errors that are roughly twice as
large as those of SG-1. The reduction of grid-size results in a 50%
CPU-time saving for gradient and hessian calculations for the
exchange–correlation energy, and leads to a 35–38% speedup in
total gradient and hessian calculations. We believe that the SG-0
grid will be useful for DFT calculations on medium-to-large mol-
ecules and especially for preliminary structural studies. The SG-0
grid is the default quadrature for DFT calculations in the Q-Chem
3.0 package.
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