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We introduce a method for obtaining atomic point-charges that yield accurate representations of the electrostatic potentials
(ESP) of large systems. The method relies on a decomposition of the density and subsequent projection of the multipole
moments of the density components onto neighbouring atomic sites. The resulting local multipole-derived charges (LMDCs)
are well-defined, do not require sampling of the ESP at grid points around the molecule and provide a good description of the
electrostatic potential. This local approach circumvents the numerical problems that arose in our original method which was
designed to find the optimal atomic charge representation of the ESP of a system outside the electron density.
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1. Introduction

Electrostatic forces play a dominant role in intermolecular

interactions and an accurate, but simple, representation of

the electrostatic potential is essential for the efficient

simulation of molecular dynamics. Atomic point-charge

models, adorned with various bond parameters, form the

basis of molecular mechanics methods and are a proven

compromise between cost and accuracy in this respect.

However, the wide use of atomic charges belies their lack

of a unique definition, a deficiency that has lead to a

plethora of different approaches being advocated in the

literature [1–13]. The relative usefulness of these methods

is ultimately determined by the intended use of the

resulting atomic charges.

If intermolecular interactions are of interest, then it

makes sense to target the modelling of the electrostatic

potential. Methods involving the direct fitting of point-

charges to electrostatic potential data are well established

[2,4,6–11]. Nevertheless, these methods are cumbersome

in that the charges obtained depend on the choice of points

around the molecule at which the ESP is evaluated, and in

practice only a small subspace around the molecule is

considered.

Recently, we proposed an atomic point-charge model

that yields the best possible reproduction of the

electrostatic potential outside the electron density [13].

The point-charges were determined by fitting to as many

molecular multipole moments as possible rather than

explicitly fitting to data obtained by evaluating the ESP at

points in space. It was shown that this approach is well-

defined, efficient and leads to excellent agreement

between the true ESP and that obtained from the point-

charges.

Our approach, however, is not without its limitations.

Numerical problems can arise when calculating the atomic

charges in large systems. These problems can be traced to

the very large high-order moments which result in the

fitting equations becoming ill-conditioned. Similar ill-

conditioned equations arise when fitting point-charges to

ESP data [14]. Additionally, charges associated with

atoms “buried” within the molecule can have extremely

large magnitudes, and although these charges reproduce

the ESP well, they do so through a delicate mutual

cancellation.

In this paper we introduce a modification of our original

approach which effectively avoids these problems. This

new approach shares some similarities to the distributed

multipole analysis (DMA) [15] and Mulliken population

analysis [1] in that it relies on a decomposition of the

density in terms of basis function pairs. However, unlike

the DMA, our approach restricts the representation to

atom-centred point-charges and uses multiple centres to

model the multipoles of each basis function pair. These
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restrictions ensure that the computational cost of using the

model remains low, even in applications to large systems.

2. Theory

Many quantum chemical methods rely on the use of

nuclear-centred Gaussian basis functions. Within these

methods the electron density can be written

rðrÞ ¼
X
mn

PmnfmðrÞfnðrÞ ð1Þ

where P is the density matrix and fm are the Gaussian

basis functions. The density is, therefore, naturally

decomposed into density elements rmn ¼ Pmnfmfn that

are distributed within the molecule, either at nuclear

centres (if fm and fm are concentric) or on internuclear

axes (otherwise).

Using the Legendre expansion of the Coulomb operator,

the potential of the density element rmn located at rmn can

be written

~VmnðrÞ .
X
l;m

kr2 rmnk
22l21

Rm
l ðr2 rmnÞ Rm

l

� �
mn

ð2Þ

where Rm
l are the real, regular solid harmonics given by

R0
lðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2lþ 1

r
r lY0

lðr=rÞ

R^m
l ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
^2p

2lþ 1

r
r l Y jmj

l ðr=rÞ^ Y jmj
l ðr=rÞ

h i
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where Ym
l are the usual spherical harmonics without the

Condon–Shortley phase [16]. kRm
l lmn are the multipole

moments of the density element, about its origin, given by

Rm
l

� �
mn
¼

ð
rmnðr2 rmnÞR

m
l ðrÞdr ð4Þ

Using the linearity of the potential operator the total

potential of the molecule can be written

~VðrÞ ¼
X
mn

~VmnðrÞ ð5Þ

where the tilde is to remind us that the expression is

strictly valid only outside the electron density.

We observe that the potential in equation (2) is

dominated by the low-order multipole moments and, in the

spirit of our original multipole derived charges (MDCs)

method [13], we will target these for each rmn. The essence

of the local multipole-derived charges (LMDC) method is

that we stipulate that, to some order Lmax, the kRm
l lmn (for

l # Lmax; jmj # l) must be reproduced by partial point

charges located on the nuclei closest to rmn. By

reproducing the multipole moments rather than directly

fitting charges to ESP data on a grid, we avoid the

problems associated with the grid-base approaches such as

rotational dependence.

If there is no local symmetry about rmn, then the number

of point charges required is given by ðLmax þ 1Þ2 and the

partial point-charges, qimn, satisfy the following

X
i

qimnR
m
l ðAiÞ ¼ Rm

l

� �
mn

ð6Þ

where Ai is the location of the ith atom and the the sum is

over all atomic centres closest to rmn. The LMDC charge

associated with atom i is given by qi ¼
P

mnq
i
mn. In the

original MDC method [13] the highest order of multipole

required to uniquely determine the atomic charges was

fixed by the number of atoms in the system. For large

systems this entailed using high-order multipoles which

caused the associated matrix equations to become poorly

conditioned. In the LMDC approach we are free to restrict

the highest order of multipole used to lower values, and

yet still have uniquely determined charges on the atoms.

Our algorithm batches over all shell-pairs arising from

the same pair of nuclear centres and also only considers

those shell-pairs that are significant, as determined by the

two-electron integral cut-off threshold. The number of

fitting equations that have to be solved therefore scales as

OðNatomsÞ. In practice, the cost of determining the LMDCs

is a small fraction of the cost of the self-consistent field

calculation required to obtain the density.

3. Results and discussion

We have implemented the above algorithm within a

development version of the QCHEM [17] package and have

applied it to the base-pair system adenine–thymine. The

structure was obtained from the SPARTAN [18] package

and was capped with hydrogen atoms to give a system

with a total of 62 atoms. The HF/6-31G(d) density was

computed and the corresponding shell-pair decomposition

of the density was used to compute the LMDCs with the

maximum order of multipole, Lmax, set to 5. This ensures

all molecular multipoles up to and including 32-poles are

reproduced, and requires projection of the kRm
l lmn onto the

nearest 36 nuclei. For comparison the Mulliken and

CHELPG [7] charges were also computed using the same

density. The CHELPG charges were obtained from the

GAMESS [19] package.

Figure 1 shows the error in the ESP made by each point-

charge approximation. The cross section is taken through

the xy plane of the molecule which approximately

corresponds to the plane of the hydrogen bonds. It is

well-known that the Mulliken charges yield a poor

representation of the ESP and this is illustrated by the

large spacings between the contours in the error plot.

CHELPG, on the other hand, is designed to provide a good

model for the ESP just outside the van der Waals (vdW)

surface and consequently yields a good overall potential in

the region shown. The error in the LMDC potential is

much larger close to the vdW surface and this is a

reflection of the fact that the multipole expansion, upon
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which the LMDC approach is based, is an asymptotic

series and the error is therefore much larger in regions

close to the electron density.

Further from the vdW surface the LMDC potential

becomes more competitive. This is shown more clearly in

figures 2 and 3 which show log–log plots of the absolute

error in the potential along the positive regions of the x and

y axes. The singularities in these plots correspond to points

where the potentials cross the true potential and hence the

error goes to zero. The major axis of the molecule is

aligned along the x axis and figure 2 shows that along this

axis the ESP of the LMDCs is superior to both of the other

charge models. Along the y axis (figure 3) the reproduction

of the potential is less satisfactory close to the vdW

surface. The reason for this is that the expansion of the

potential in terms of molecular multipole moments is only

valid outside a sphere with a radius large enough to

envelope all the electron density of the molecule. In an

anisotropic system such as this, the radius is determined

by the extent of the density along the principle axis, in this

case the x axis, and we therefore, expect the LMDCs to

perform better in this direction. In other directions, along

the y axis for example, there will be regions of space where

the density is effectively zero, but yet are still within the

sphere where the multipole expansion is not valid.

By construction, the LMDCs accurately reproduce all

the molecular multipole moments of this system up to 5th

order. No attempt is made to model the 6th order moments

Figure 1. Contour plots showing the absolute error between the HF/6-31G(d) ESP for the AT base pair and that obtained using the Mulliken (top)
CHELPG (middle) and LMDCs (bottom). The white area in the centre indicates the vdW volume. All values are in atomic units.
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and these are in error by as much as 100%. The error

introduced by this neglect of the 64-poles decays as r 27

and corresponds to a slope of 27 on the log–log plots.

The slope of the best fit line to the LMDC curve in figure 2

for x values between 40 and 80 bohr is 27.01 indicating

that this asymptotic limit has been obtained. The

corresponding slopes for the other two curves are harder

to estimate due to the singularities in the curves, but they

are clearly not as steep and this is consistent with both the

Mulliken and CHELPG charges making errors in the

lower-order moments. In figure 3 the corresponding

LMDC slope is 25.7 and therefore the asymptotic limit

has not yet been reached on the length scale shown.

Figure 3 also clearly shows the cross-over point at y <
e3:25 < 25:8 bohr where the LMDC potential becomes

better than the CHELPG potential. The decision as to

which of these two model potentials to use will clearly

depend on the length-scales that are important for the

particular application, with long-range effects favouring

the LMDCs. An accurate representation of the long range

potential such as that provided by the LMDCs is important

for modelling some properties (see for example reference

[20]).

For this system, the original MDC approach also

attempts to fit the 64-poles and least-squares fits the 128-

poles to determine the remaining 13 charges. The resulting

matrix equation has a condition number of 1:03 £ 1028

and it is not possible to solve this using our Fortran

implementation. In contrast, the condition numbers for the

fitting equations in the LMDC approach do not exceed

9:53 £ 108 and do not present any numerical difficulties.

4. Conclusions

We have presented a method for obtaining atomic charges

for large molecules that yields an accurate description of

the electrostatic potential, especially in the asymptotic

regions. By decomposing the density into shell-pair

components, and projecting the multipoles of each of

these components onto only neighbouring atom sites,

greater control over the maximum order of multipole

required is achieved, leading to matrix equations that are

much better conditioned. The LMDC charges do not

reproduce the maximum number of multipoles possible,

and are therefore theoretically inferior to the original

prescription, however they are are tractable for large

systems and share many of the positive qualities of the

MDC approach. For example, the method is efficient,

yields an accurate representation of the ESP and does not

require the ESP to be evaluated on grid points surrounding

the molecule. Unlike the original MDC approach, LMDCs

require a decomposition of the density and, therefore,

cannot be determined from experimentally determined

multipoles. In practice this is not a problem as the high-

order moments required in either method are difficult to

obtain empirically. The LMDC charges outperform others

in regions far from the molecule and are ideally suited to

applications involving long-range electrostatic forces.
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