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We present a preliminary version of a software package, CHEM1D, that performs molecular orbital calculations on one-
dimensional atoms and molecules using the unadorned Coulomb operator 1/|x1 − x2|. We describe methods for computing
the necessary one- and two-electron integrals and outline the overall structure of the package. We use CHEM1D to perform
calculations on a set of small molecules and show that one-dimensional chemistry differs in a number of interesting ways
from three-dimensional chemistry.
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1. Introduction

One-dimensional (1D) chemistry is an exciting and emerg-
ing field. Many quasi-linear systems have been studied ex-
perimentally: carbon nanotubes [1–5], organic conductors
[6–10], transition metal oxides [10], edge states in quan-
tum Hall liquids [11–13], semiconductor heterostructures
[14–18] and confined atomic gases [19–21]. Likewise, a
number of theoretical studies of quasi-linear systems have
been published, such as those by Burke and co-workers
[22,23] and Herschbach and co-workers [24–26].

Almost all previous work has been based on Hamilto-
nians with softened Coulomb operators.

López-Castillo [27] has performed an extensive semi-
classical study of the 1D hydrogen molecule using the un-
adorned 1/|x1 − x2| operator. The present authors in collab-
oration with Loos have recently reported a quantum study
[28], which also uses the 1/|x1 − x2| operator throughout,
that focuses on the chemical ramifications.

This formulation allows us to investigate the behaviour
of normal electrons that are strictly confined on a line. Such
systems were first treated in the seminal work by Loudon
[29] on the 1D hydrogen atom. Unfortunately, the literature
on this topic has been fraught with controversy [30–36] and
a number of theoretical starting points have been proposed.

The fundamental difficulty is the fact that the Coulomb
operator in 1D, unlike in three dimensions [37], is not self-
adjoint. As a consequence, in order to evaluate the energy,
it is necessary to construct a suitable extension or, equiv-
alently, impose a set of boundary conditions. Oliveira and
Verri have shown [38] that many extensions are possible but
we have chosen the Dirichlet boundary condition, which re-
quires the wave function to vanish when two particles touch.
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Later work by Oliveira and co-workers [39,40] has shown
that this physically appealing choice arises naturally when
considering electrons that are gradually confined to the line
by a sequence of increasingly small cylinders but we em-
phasise that our numerical results depend critically on this
choice.

The Dirichlet choice has three consequences. First, as
Núñez-Yépez and co-workers have argued [41,42], the elec-
trons and nuclei become mutually impenetrable which has
far-reaching implications for 1D chemistry. Second, the en-
ergy is independent of the spin state, allowing us to assume
(for example) that all electrons are spin-up. Third, by the
exclusion principle, no orbital may contain more than one
electron.

In this article, we describe the software package that
we developed for our recent work [28]. In Section 2, we
describe the underlying theory and, particularly, our two-
electron integral methodology. Section 3 sketches the over-
all structure of our program and Section 4 presents and
discusses some new results that it has yielded.

2. Theory

2.1. Notation

Within the Dirichlet choice, particles that are confined
strictly to a line are impenetrable to each other. As a result,
the electrons are trapped in the regions of space (‘domains’)
between adjacent nuclei. A 1D molecule with N nuclei has
an infinite domain (domain 0) to the left of the molecule,
N − 1 finite domains (domains 1, 2, . . . , N − 1) between
adjacent nuclei, and another infinite domain (domain N) to
the right of the molecule.
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1844 C.J. Ball and P.M.W. Gill

Figure 1. The four singly occupied orbitals of the molecule 1Li2H1. The green dot represents the Li nucleus, the red dot the H nucleus
and each coloured line is an occupied orbital.

To describe a state of a 1D molecule, one specifies the
nuclei and their positions Ap (p = 1, . . . , N), the number
of electrons in each domain and the orbitals they occupy.
CHEM1D currently treats only ground states and so, hence-
forth, we will assume that the occupied orbitals in each
domain are those of lowest energy.

Our notation is straightforward. For example, the
1Li3He1H2Be2 molecule consists of four nuclei and nine
electrons. There is one electron in domain 0 to the left of
the Li nucleus, three in domain 1 between the Li and He
nuclei, one in domain 2 between the He and H nuclei, two
in domain 3 between the H and Be nuclei and two in domain
4 to the right of the Be nucleus. As mentioned above, these
electrons singly occupy the lowest energy orbitals of their
associated domains.

A graphical representation of the 1Li2H1 molecule and
its occupied orbitals is shown in Figure 1.

2.2. Basis sets

For this work, we have developed a set of basis functions to
describe the orbitals. A basis function Fp

µ has index µ and
resides entirely in domain p. When the domain superscript
is redundant it is omitted. It is easy to see that the basis
function pair (Fp

µFq
ν |, with p ̸= q, must necessarily vanish

everywhere.
In domain 0, we have a set of normalised exponentials

Lµ(x) = 2µ3α3/2(A1 − x) exp[−µ2α(A1 − x)] (1)

in domain N, we have an analogous set of exponentials

Rµ(x) = 2µ3α3/2(x − AN ) exp[−µ2α(x − AN )] (2)

and, in the finite domains, we have even polynomials

Ep
µ(x) =

√
2/π1/2

R

$(2µ + 3/2)
$(2µ + 1)

(1 − z2)µ (3)

and odd polynomials

Op
µ(x) =

√
4/π1/2

R

$(2µ + 5/2)
$(2µ + 1)

z(1 − z2)µ, (4)

where z = (Ap + Ap + 1 − 2x)/(Ap − Ap + 1), R = Ap + 1 −
Ap and $ is the Gamma function. We include only positive
integer µ to ensure that the orbitals vanish at the nuclei.

All of the necessary one-electron integrals can be found
in closed form and we list the relevant formulae below. We
also present a discussion of the algorithms we have devel-
oped for evaluating the required two-electron quantities.
We use chemist’s notation [43] throughout.

2.3. One-electron integrals

Define T̂ = −∇2/2, V̂p = |x − Ap|−1, ζ = µ2 + ν2, η =
λ2 + σ 2 and

G(x, y) = $(x + y)
√

$(2x) $(2y)
. (5)

2.3.1. Overlap integrals

All overlap integrals vanish except the following

(Lµ|Lν) = (Rµ|Rν) = (2µν/ζ )3 (6)

(
Ep

µ|Ep
ν

)
= G(µ + 1/2, ν + 1/2)

G(µ + 3/4, ν + 3/4)
(7)

(
Op

µ|Op
µ

)
= G(µ + 1/2, ν + 1/2)

G(µ + 5/4, ν + 5/4)
. (8)

2.3.2. Kinetic integrals

All kinetic energy integrals vanish except the following

(Lµ|T̂ |Lν)
(Lµ|Lν)

= (Rµ|T̂ |Rν)
(Rµ|Rν)

= α2µ2ν2

2
(9)
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(
Ep

µ|T̂ |Ep
ν

)

(Ep
µ|Ep

ν )
= 4µν(µ + ν + 1/2)

(µ + ν)(µ + ν − 1)
1
R2

(10)

(
Op

µ|T̂ |Op
ν

)

(Op
µ|Op

ν )
= 12µν(µ + ν + 3/2)

(µ + ν)(µ + ν − 1)
1
R2

, (11)

where R = Ap + 1 − Ap.

2.3.3. Nuclear-attraction integrals

All nuclear-attraction integrals vanish except

(Lµ|V̂p|Lν)
(Lµ|Lν)

= (ζαRp)3

Rp

U (3, 3, ζαRp)

(Rp = Ap − A1) (12)

(Rµ|V̂p|Rν)
(Rµ|Rν)

= (ζαRp)3

Rp

U (3, 3, ζαRp)

(Rp = AN − Ap) (13)

(
Eq

µ|V̂p|Eq
ν

)

(Eq
µ|Eq

ν )
= 1

|Rp|
F

(

1,
1
2
, µ + ν + 3

2
,

a2

R2
p

)

(Rp = |Aq + a − Ap|) (14)

(Oq
µ|V̂p|Oq

ν )
(Oq

µ|Oq
ν )

= 1
|Rp|

F

(

1,
3
2
, µ + ν + 5

2
,

a2

R2
p

)

(Rp = |Aq + a − Ap|) (15)

(Eq
µ|V̂p|Oq

ν )
(Oq

µ|Oq
ν )

= 1
|Rp|

F

(

1,
3
2
, µ + ν + 5

2
,

a2

R2
p

)
a/Rp√
4µ + 3

(Rp = |Aq + a − Ap|), (16)

where U is the confluent hypergeometric function [44], F is
the Gauss hypergeometric function [44] and a = (Aq + 1 −
Aq)/2.

2.4. Two-domain two-electron integrals

Antisymmetrised (‘double bar’) electron repulsion integrals
(ERIs) quantify interactions between an electron in domain
p and another in domain q. If p ̸= q, we have

(
Fp

µFp
ν ||Fq

λFq
σ

)
=

(
Fp

µFp
ν |Fq

λFq
σ

)
−

(
Fp

µFq
λ|Fp

ν Fq
σ

)

=
(
Fp

µFp
ν |Fq

λFq
σ

)
(17)

and there are three cases: (1) both domains are infinite;
(2) one domain is infinite and the other is finite; (3) both
domains are finite.

2.4.1. Infinite/infinite domains

If we let ζ = µ2 + ν2, η = λ2 + σ 2 and R = AN − A1,
then

(LµLν |RλRσ )
(Lµ|Lν)(Rλ|Rσ )

= αζη

2(ζ − η)5

(
1
2

[5(ζ + η)(ζ − η)3

− 3(ζ + η)3(ζ − η) − 2Rαζη(ζ − η)3]

− ζ 2η2[12 − 6Rα(ζ − η)

+ (Rα(ζ − η))2]U (1, 1, Rαζ ) + ζ 2η2

×
[
12 + 6Rα(ζ − η) + (Rα(ζ − η))2]

×U (1, 1, Rαη)
)

(18)

or, in the limiting case where ζ = η,

(LµLν |RλRσ )
(Lµ|Lν)(Rλ|Rσ )

= αζ

120

(
24 − 6Rαζ + 2(Rαζ )2

− (Rαζ )3 + (Rαζ )4

− (Rαζ )5U (1, 1, Rαζ )
)
. (19)

When R = 0 (i.e. for atomic calculations), these two for-
mulae reduce to

(LµLν |RλRσ )
(Lµ|Lν)(Rλ|Rσ )

= αζη

2(ζ − η)5

(
(ζ 2 − η2)(ζ 2 − 8ζη + η2)

+ 12ζ 2η2 ln
(

ζ

η

))
(20)

(LµLν |RλRσ )
(Lµ|Lν)(Rλ|Rσ )

= αζ

5
. (21)

2.4.2. Infinite/finite domains

Unfortunately, we have not been able to obtain analytic and
numerically satisfactory expressions for (LL|EE) integrals
and others of this type. Fortunately, there are comparatively
few of these integrals and if we define a = (Ap + 1 − Ap)/2,
R = (Ap + a) − A1, ζ = µ2 + ν2 and m = λ + σ and
reformulate the desired ERIs in terms of the potential of the
LL product, we obtain

(LµLν |Ep
λEp

σ )
(Lµ|Lν)(Ep

λ |Ep
σ )

= ζ 3

a2m+1
√

π

$(m + 3/2)
$(m + 1)

×
∫ R+a

R−a

(a2 + (R − x)2)mx2

×U (3, 3, ζx) dx (22)

(LµLν |Ep
λOp

σ )
(Lµ|Lν)(Op

λ |Op
σ )

= − 2ζ 3

a2m+2
√

π
√

3 + 4λ

$(m + 5/2)
$(m + 1)

×
∫ R+a

R−a

(a2 + (R − x)2)m

× (R − x)x2U (3, 3, ζx) dx (23)
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1846 C.J. Ball and P.M.W. Gill

(LµLν |Op
λOp

σ )
(Lµ|Lν)(Op

λ |Op
σ )

= 2ζ 3

a2m+3
√

π

$(m + 5/2)
$(m + 1)

×
∫ R+a

R−a

(a2 + (R − x)2)m

× (R − x)2x2U (3, 3, ζx) dx. (24)

We have found that these can be evaluated satisfactorily by
numerical quadrature. The (RR|EE) integrals and others
can be found in the same way.

It is possible to obtain the (LµLν |Op
λOp

σ ) integral by
using the relation

(Op
µOp

ν |
(Op

µ|Op
ν )

= (3 + 2(µ + ν))
(Ep

µEp
ν |

(Ep
µ|Ep

ν )

− (2 + 2(µ + ν))
(Ep

µEp
ν+1|

(Ep
µ|Ep

ν+1)
(25)

but we do not currently make use of this.

2.4.3. Finite/finite domains

The final class of two-domain ERIs are those between two
finite domains. We have constructed a four-term recurrence
relation for the calculation of these integrals. Let fp = f(x −
P) be a polynomial basis function pair in the domain p and
centred around the point P. Let gq = g(y − Q) be another
function pair in the domain q centred around the point Q.
Then we have the following

(f p|gq) =
∫ ∞

−∞

∫ ∞

−∞

f (x − P )g(y − Q)
y − x

dxdy

=
∫ ∞

−∞

∫ ∞

−∞
f (x − P )

(∫ ∞

0
e−s(y−x)ds

)

× g(y − Q)dxdy

=
∫ ∞

0

(∫ ∞

−∞
f (x − P )esxdx

)

×
(∫ ∞

−∞
g(y − Q)e−sydy

)
ds

=
∫ ∞

0
Lf (−s)Lg(s)e−(Q−P )sds, (26)

where Lf and Lg are the Laplace transforms of the basis
functions pairs fp and gq translated so that they are centred
around 0 respectively. Let a = (Ap + 1 − Ap)/2 be half the
width of the domain p. The required Laplace transforms are

L[Ep
µEp

ν ](s)
(Ep

µ|Ep
ν )

= 0F1

(
µ + ν + 3

2
;
(as

2

)2
)

(27)

L[Ep
µOp

ν ](s)
(Op

µ|Op
ν )

= − as√
4µ + 3

0F1

(
µ + ν + 3

2
;
(as

2

)2
)

,

(28)

where 0F1(c; x) is the confluent hypergeometric limit func-
tion, which obeys the following three-term recurrence rela-
tion [44]

0F1(c − 1; x) − 0F1(c; x) = x

c(c − 1) 0F1(c + 1; x). (29)

Since we are interested in products of the functions in
Equations (27) and (28), both of which contain the same
argument to the hypergeometric function, we are able to
apply the recurrence relation (29) twice and remove the
additional argument dependence. Let m = µ + ν, n =
λ + σ , a = (Ap + 1 − Ap)/2 and b = (Aq + 1 − Aq)/2, then

0F1

(
m − 1

2
;
a2s2

4

)
0F1

(
n + 3

2
;
b2s2

4

)

= 0F1

(
m + 1

2
;
a2s2

4

)
0F1

(
n + 3

2
;
b2s2

4

)

+
a2(n − 1

2 )(n + 1
2 )

b2(m − 1
2 )(m + 1

2 )
0F1

(
m + 3

2
;
a2s2

4

)

×
[

0F1

(
n − 1

2
;
b2s2

4

)
− 0F1

(
n + 1

2
;
b2s2

4

)]
. (30)

This recurrence relation can be applied to the integrals
constructed from Equations (26), (27) and (28). As an il-
lustrative example one possible recurrence relation is

(Ep
µ−1Ep

ν |Eq
λEq

σ )

(Ep
µ−1|E

p
ν )(Eq

λ|E
q
σ )

=
(Ep

µEp
ν |Eq

λEq
σ )

(Ep
µ|Ep

ν )(Eq
λ|E

q
σ )

+
a2(n − 1

2 )(n + 1
2 )

b2(m + 1
2 )(m + 3

2 )

×
(

(Ep
µ+1Ep

ν |Eq
λ−2Eq

σ )

(Ep
µ+1|E

p
ν )(Eq

λ−2|E
q
σ )

−
(Ep

µ+1Ep
ν |Eq

λ−1Eq
σ )

(Ep
µ+1|E

p
ν )(Eq

λ−1|E
q
σ )

)

. (31)

Numerical experiments suggest that this backwards recur-
rence in µ is sufficiently stable for our purposes but that the
forward recurrence is unstable. This necessitates the con-
struction of starting values for the recurrence. Two sets of
starting values are required, and these sets can be viewed
as two rows where m = µ + ν is small and two columns
where n = λ + σ is large. Figure 2 shows a graphical
representation of the recurrence.

Obtaining the two columns where n is large can be
achieved adequately by using the power series definition of
the 0F1 hypergeometric function

0F1(a; z) =
∞∑

k=1

1
(a)k

zk

k!
(32)

(a)k = a(a + 1)(a + 2) . . . (a + k − 1)(a + k), (33)

D
ow

nl
oa

de
d 

by
 [A

us
tra

lia
n 

N
at

io
na

l U
ni

ve
rs

ity
] a

t 1
5:

24
 1

3 
Ju

ly
 2

01
5 



Molecular Physics 1847

m

n

Figure 2 Graphical representation of the recurrence relation for
computing electron repulsion integrals between two finite do-
mains. Green dots represent integrals with one small parameter
that can be computed by analytic expressions. Blue dots represent
integrals that are evaluated from power series expansions. Grey
circles are the integrals to be evaluated by recursion. The red and
yellow circles denote the integrals that can be used to form the
integrals shown by the red and yellow triangles, respectively.

where (a)k is the Pochhammer symbol [44]. The terms in
the sum decay rapidly when the hypergeometric parameter
is of modest size and, as a result, the sum can be truncated
after a few terms.

To construct the two rows with small values of m =µ +
ν, we have obtained analytic expressions for the necessary
integrals when m = 0 and m = −1. Let m = µ + ν, n =
λ + σ , a = (Ap + 1 − Ap)/2, b = (Aq + 1 − Aq)/2 and
R = |(Aq + b) − (Ap + a)| be the distance between the
centroids of the two domains p and q. Then for two pairs of
even polynomials these expressions are

(Ep
µEp

ν |Eq
λEq

σ )
(Ep

µ|Ep
ν )(Eq

λ|E
q
σ )

= 1
2

[
1

R − a
2F1

(
1
2
, 1; n + 3

2
;

b2

(R−a)2

)

+ 1
R + a

2F1

(
1
2
, 1; n+3

2
;

b2

(R+a)2

) ]

m = −1 (34)

(Ep
µEp

ν |Eq
λEq

σ )
(Ep

µ|Ep
ν )(Eq

λ|E
q
σ )

= 1
8a

[
2b2

(3 + 2n)(R − a)2

× 3F2

(
1, 1,

3
2

; 2, n + 5
2

;
b2

(R − a)2

)

− 2b2

(3 + 2n)(R + a)2

× 3F2

(
1, 1,

3
2

; 2, n + 5
2

;
b2

(R + a)2

)

− 4 (ln(R − a) − ln(R + a))
]

m = 0. (35)

For a pair of even functions interacting with a pairing of an
even and an odd polynomial, the expressions are

(Ep
µEp

ν |Eq
λOq

σ )
(Ep

µ|Ep
ν )(Oq

λ|O
q
σ )

= − b

2
√

3 + 4λ

[
(3 + 2n)[(3 + 2n)(R − a)2 − b2]

((R − a)2 − b2)2

−4(1 + n)(2 + n)(R − a)2

((R − a)2 − b2)2

× 2F1

(
−1

2
, 1; n + 5

2
;

b2

(R − a)2

)

+ (3 + 2n)[(3 + 2n)(R + a)2 − b2]
((R + a)2 − b2)2

− 4(1 + n)(2 + n)(R + a)2

((R + a)2 − b2)2

× 2F1

(
−1

2
, 1; n + 5

2
;

b2

(R + a)2

) ]

m = −1 (36)

(Ep
µEp

ν |Eq
λOq

σ )
(Ep

µ|Ep
ν )(Oq

λ|O
q
σ )

= − b

2a
√

3 + 4λ

[
1

R − a
2F1

(
1
2
, 1; n + 5

2
;

b2

(R − a)2

)

+ 1
R + a

2F1

(
1
2
, 1; n + 5

2
;

b2

(R + a)2

) ]

m = 0. (37)

Note that when the two domains being integrated over
are adjacent, it is necessary to take the limit as R − a → 0.

It is not necessary to consider any more integrals. Using
Equation (25) both bras and kets containing pairs of odd
basis functions can be constructed from those over pairs of
even functions. Additionally, integrals over two mixed pairs
(one even and one odd function) can be formed from the
integral over two pairs of even functions

(Ep
µOp

ν |Eq
λOq

σ )
(Op

µ|Op
ν )(Oq

λ|O
q
σ )

= −4b

a

(m + 1/2)(m + 3/2)
√

3 + 4µ
√

3 + 4λ

×
(

(Ep
µ−1Ep

ν |Eq
λ+1Eq

σ )

(Ep
µ−1|E

p
ν )(Eq

λ+1|E
q
σ )

−
(Ep

µEp
ν |Eq

λ+1Eq
σ )

(Ep
µ|Ep

ν )(Eq
λ+1|E

q
σ )

)

. (38)

Any other required integrals can be obtained via symmetry.
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1848 C.J. Ball and P.M.W. Gill

2.5. One-domain two-electron integrals

We now turn our attention to integrals where all four basis
functions reside in the same domain. Here, one find that
the Coulomb and exchange components of the antisym-
metrised integral diverge but their sum is finite. To treat
these, we rewrite the Coulomb operator as the limit of a se-
quence of softened potentials erf (ω(x − y))/(x − y), where
ω determines the degree of softening.

Taking the Fourier transform of this operator allows
us to also bring the two basis function pairs into frequency
space. Let (Fp

µFp
ν |Fp

λFp
σ )ω denote a two-electron integral us-

ing the softened Coulomb operator, Fµν = F[Fp
µFp

ν ] be the
Fourier transform of the product Fp

µFp
ν , $(a, x) denote the

incomplete gamma function and γ denote Euler’s constant,
then we find

(
Fp

µFp
ν |Fp

λ Fp
σ

)
ω

=
(

Fp
µFp

ν

∣∣∣∣
erf (ω(x − y))

x − y

∣∣∣∣ Fp
λ Fp

σ

)

=
(

Fp
µFp

ν

∣∣∣∣∣
1

2π

∫ ∞

−∞
$

(
0,

k2

4ω2

)

× eik(x−y)dk

∣∣∣∣∣F
p
λ Fp

σ

)

= 1
2π

∫ ∞

−∞
$

(
0,

k2

4ω2

) (∫ Ap+1

Ap

Fp
µFp

ν eikxdx

)

×
(∫

d

Fp
λ Fp

σ e−ikydy

)
dk

= 1
2π

∫ ∞

−∞
$

(
0,

k2

4ω2

)
Fµν(k)Fλσ (−k)dk

= 1
2π

[∫ ∞

−∞

(
2 sinh−1(

√
2ω) − γ − 3 ln 2

)

×Fµν(k)Fλσ (−k) dk

+
∫ ∞

−∞

(

$

(
0,

k2

4ω2

)
− 2 sinh−1(

√
2ω)

+γ + 3 ln 2

)

Fµν(k)Fλσ (−k) dk

]

. (39)

(
Fp

µFp
ν ||Fp

λ Fp
σ

)
= lim

ω→∞

(
Fp

µFp
ν |Fp

λ Fp
σ

)
ω

−
(
Fp

µFp
λ |Fp

ν Fp
σ

)
ω

= lim
ω→∞

[
1

2π

(
2 sinh−1(

√
2ω) − γ − 3 ln 2

)

×
( ∫ ∞

−∞
Fµν(k)Fλσ (−k)dk

−
∫ ∞

−∞
Fµλ(k)Fνσ (−k)dk

)

+ 1
2π

∫ ∞

−∞

(

$

(
0,

k2

4ω2

)

− 2 sinh−1(
√

2ω) + γ + 3 ln 2

)

× (Fµν(k)Fλσ (−k)

−Fµλ(k)Fνσ (−k))dk

]

. (40)

We can use the following relationship, which is a conse-
quence of Parseval’s theorem [44], to remove the first term
within the limit
∫ ∞

−∞
Fµν(k)Fλσ (−k)dk =

∫ Ap+1

Ap

Fp
µ(r)Fp

ν (r)Fp
λ (r)Fp

σ (r)dr

=
∫ ∞

−∞
Fµλ(k)Fνσ (−k)dk (41)

and obtain

(
Fp

µFp
ν ||Fp

λFp
σ

)
= lim

ω→∞

[
1

2π

∫ ∞

−∞

(
$

(
0,

k2

4ω2

)

− 2 sinh−1(
√

2ω) + γ + 3 ln 2
)

× (Fµν(k)Fλσ (−k)

−Fµλ(k)Fνσ (−k))dk

]

=
{
Fp

µFp
ν |Fp

λFp
σ

}
−

{
Fp

µFp
λ |Fp

ν Fp
σ

}
(42)

where we have introduced the ‘quasi-integral’

{
Fp

µFp
ν |Fp

λFp
σ

}
= − 1

2π

∫ ∞

−∞
Fµν(k)Fλσ (−k) ln

(
k2

4

)
dk.

(43)

There are two cases: (1) the domain is infinite; (2) the
domain is finite.

2.5.1. Infinite/infinite quasi-integrals
It is easy to show that

{LµLν |LλLσ }
(Lµ|Lν)(Lλ|Lσ )

= {RµRν |RλRσ }
(Rµ|Rν)(Rλ|Rσ )

= αζη

(
ζ 2 + 6ζη + η2

2(ζ + η)3
− 6ζ 2η2 ln ζη

(ζ + η)5

)
.

(44)

2.5.2. Finite/finite quasi-integrals

Because of symmetry, only the {Ep
µEp

ν |Ep
λEp

σ },
{Ep

µEp
µ|Op

λOp
σ }, {Op

µOp
ν |Op

λOp
σ } and {Ep

µOp
ν |Ep

λOp
σ }

integral classes are non-vanishing and, if the relationship
(25) is exploited, it is necessary only to compute the first
and last of these classes.

We have been unable to find a general expression for
these quasi-integrals. However, because they scale inversely
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Molecular Physics 1849

with the width of the domain, we have tabulated the nec-
essary quasi-integrals for a domain on the interval [−1, 1]
and our program simply scales these, as required, on the fly.

3. Implementation

We have implemented the above theory in a new program
that we call CHEM1D. So that others may understand how
the results of Section 2 are used practically, we present
an overview of the structure of CHEM1D. In the following
section, we define D to be the set of all domains (both finite
and infinite) in the molecule, DI and DF to be the set of
all infinite and finite domains, respectively, N(p) to be the
total number of basis functions in the domain p and E(p)
and O(p) to be the number of even and odd basis functions,
respectively, in the finite domain p.

3.1. Integral evaluation

The heart of any quantum chemistry program is its integral
evaluation routines, particularly those for the two-electron
integrals, for it is these quantities that typically represent
the computational bottleneck and make the heaviest demand
on computer memory. Our algorithms are not optimal but
we have attempted to exploit some of the simplifications
that arise as a consequence of the domain separation of
electrons.

3.1.1. One-electron integrals

Because the product of two basis functions in different do-
mains vanishes, the one-electron integral matrices are block
diagonal with each block corresponding to a domain. There-
fore, for each of the three matrices, and for each domain
p ∈ D, we create a square matrix of size N(p).

Because the integrals can be computed from analytic
expressions, computing the content of these matrices is a
relatively simple process. We use three subroutines: one
for the overlap, one for the kinetic energy and one for the
nuclear-attraction energy. Each routine operates over one
domain with each call.

Let Sp, Tp and Vp be the overlap, kinetic and nuclear-
attraction matrix for the domain p, respectively, and Zn

be the charge of the nth nucleus. Pseudocode describing
our methods for computing these integrals can be seen in
Algorithm 1.

3.1.2. Two-domain two-electron integrals

We now turn our attention to the significantly more compli-
cated two-electron integrals. As described in Section 2.4,
these integrals can be separated into two classes. We be-
gin with the case of non-overlapping integrals, which can
be further separated into another three subclasses: integrals

Algorithm 1. One-electron integrals
1: procedure OVERLAP(p) ◃ Computes Sp

2: if p is an infinite domain then
3: for i, j = 1 → N (p) do
4: S

p
i,j = Equation (6)

5: end for
6: else
7: for i, j = 1 → E(p) do
8: S

p
i,j = Equation (7)

9: ◃ Compute $ ratios by recursion
10: end for
11: for i, j = 1 → O(p) do
12: S

p
i+E(p),j+E(p) = Equation (8)

13: end for
14: end if
15: end procedure
16: procedure KINETIC(p) ◃ Computes T p

17: if p is an infinite domain then
18: for i, j = 1 → N (p) do
19: T

p
i,j = S

p
i,j × Equation (9)

20: end for
21: else
22: for i, j = 1 → E(p) do
23: T

p
i,j = S

p
i,j × Equation (10)

24: end for
25: for i, j = 1 → O(p) do
26: T

p
i+E(p),j+E(p) = S

p
i+E(p),j+E(p) × Equation

27: (11)
28: end for
29: end if
30: end procedure
31: procedure POTENTIAL(p) ◃ Computes V p

32: if p is an infinite domain then
33: for i, j = 1 → N (p) do
34: V

p
i,j = Equations (12) or (13)

35: end for
36: else
37: for i, j = 1 → E(p) do
38: V

p
i,j = Equation (14)

39: end for
40: for i = 1 → E(p), j = 1 → O(p) do
41: V

p
i,j+E(p) = Equation (16)

42: V
p
j+E(p),i = V

p
i,j+E(p)

43: end for
44: for i, j = 1 → O(p) do
45: V

p
i+E(p),j+E(p) = Equation (15)

46: end for
47: end if
48: end procedure
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1850 C.J. Ball and P.M.W. Gill

between two infinite domains, integrals between a finite and
an infinite domain and integrals between two finite domains.

For convenience, we store the full set of ERIs and this is
feasible for all of the molecules reported here. The integrals
are stored in a four-index array for each pair of domains (p,
q) in the molecule. The first two indices of each array are of
length N(p), while the last two indices are of length N(q).

When both domains are infinite, we use the analytic
expressions in Equations (18)–(21). When the system is
not an atom, this requires the evaluation of a confluent hy-
pergeometric function. We evaluate these functions before
entering the loop structure for the integrals; the hyperge-
ometric function is required twice for most evaluations,
one call dependent on the two basis functions from p and
one on the two basis functions from q. An overview of the
procedure we use here can be found in Algorithm 2.

Algorithm 2. Two-electron integrals between infinite do-
mains

1: procedure INF-INF(p, q)
2: if the system is an atom then
3: for µ, ν = 1, N(p) do
4: ζ = µ2 + ν2

5: for λ, σ = 1, N (q) do
6: η = λ2 + σ 2

7: if ζ = η then
8: (µν|λσ ) = S

p
µν S

q
λσ×Equation (21)

9: else
10: (µν|λσ ) = S

p
µν S

q
λσ×Equation (20)

11: end if
12: end for
13: end for
14: else
15: for µ, ν = 1, max(N (p), N(p)) do
16: Precompute U

(
1, 1, Rα(µ2 + ν2)

)

17: end for
18: for µ, ν = 1, N(p) do
19: ζ = µ2 + ν2

20: for λ, σ = 1, N(q) do
21: η = λ2 + σ 2

22: if ζ = η then
23: (µν|λσ ) = S

p
µν S

q
λσ×Equation (19)

24: else
25: (µν|λσ ) = S

p
µν S

q
λσ×Equation (18)

26: end if
27: end for
28: end for
29: end if
30: end procedure

When p is an infinite domain and q is a finite domain (or
vice versa), we use a 500-point trapezoidal rule to achieve
the quadrature described above. This is simple to implement
and affords sufficient accuracy. The most expensive step in

the quadrature is the evaluation of confluent hypergeometric
functions. These can be evaluated within the loop structure
for selecting a basis set pair in the infinite domain, but
before the loop structure for the finite domain. They can
then be kept in temporary storage and used for all three
types of finite domain basis function pairs. Pseudocode for
the evaluation of this class can be found in Algorithm 3; we
assume p to be the infinite domain.

Algorithm 3. Two-electron integrals between infinite and
finite domains

1: procedure INF FIN(p, q)
2: for µ, ν = 1, N (p) do
3: ζ = µ2 + ν2

4: for i = 1, 500 do
5: Compute U (3, 3, ζxi)
6: end for
7: for λ, σ = 1, E(q) do
8: (µν|λσ ) = S

p
µν S

q
λσ × Equation (22)

9: ◃ Computed using trapezoidal rule
10: end for
11: for λ = 1, E(q), σ = 1,O(q) do
12: (µν|λσ ) = S

p
µν S

q
λσ × Equation (23)

13: ◃ Computed using trapezoidal rule
14: (µν|σλ) = (µν|λσ )
15: end for
16: for λ, σ = 1,O(q) do
17: (µν|λσ ) = S

p
µν S

q
λσ × Equation (24)

18: ◃ Computed using trapezoidal rule
19: end for
20: end for
21: end procedure

The final classes of two-domain integrals are those in-
volving finite domains. This step requires the most complex
code in CHEM1D due to the need to calculate starting val-
ues for the various recurrences from a variety of methods,
execute the recurrences and correctly pack the resulting
prototype integrals into the appropriate parts of the stor-
age arrays. To handle these steps, we use three levels of
routines. The bottom level computes the necessary starting
values for the recurrence relations used. The middle level
computes the prototype integrals using the recurrence rela-
tions described in Section 2.4.3. The top level then transfers
the completed prototype integrals from temporary storage
into the final storage arrays.

The middle subroutines are straightforward implemen-
tations of our four-term recurrence relation. During the top
level procedure, we make extensive use of the symmetry
allowed by the use of real-valued basis functions, which
minimises the looping structures required to traverse the
many possible arrangements of integrals. This requires a
great deal of care to ensure that the integrals are scattered
into the correct storage spaces, but is ultimately a straight-
forward process.
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Molecular Physics 1851

The most complicated routines for computing recur-
rence starting values are those for when µ + ν = −1,
0. The analytic expressions that must be evaluated contain
two different hypergeometric functions. To evaluate these
we employ backward recurrence, using the power series ex-
pansion to evaluate the starting points. For illustrative pur-
poses, we give an outline of the code for the computation
of integrals of the types (Ep

µEp
ν |Eq

λEq
σ ) and (Ep

µEp
ν |Oq

λOq
σ )

in Algorithm 4.

3.1.3. Quasi-integrals

Constructing the quasi-integrals for the single-domain case
is significantly simpler than building the integrals for the
two-domain cases. For the infinite domains, we use the
analytic expression in Equation (44), which requires no
special functions. As stated above, we scale a set of standard
integrals for the finite domain. We have used Mathematica
[45] to compute the analytic solution to the integrals for
a domain on the line segment [− 1, 1] and evaluate them
to high precision. These values are appropriately scaled by
CHEM1D as needed.

We use two subroutines to perform these tasks:
QUASI_INF(p) gives the integrals for the infinite domain p
and QUASI_FIN(q) those for the finite domain q.

3.1.4. Antisymmetrised integrals

The above routines are all called by a driver routine which
handles the looping over the domain structures. In our im-
plementation, this routine is also responsible for managing
the temporary storage space required and locating the ap-
propriate areas of memory for storing the single-bar and
quasi-integrals for each pairing of p and q. The contraction
of quasi-integrals to form correct double-bar integrals in the
case of overlapping domains is handled by a separate sub-
routine. This operation is almost identical to that required
for normal three-dimensional (3D) quantum chemical cal-
culations; as such we have excluded its pseudocode. The
driver routine however is described in Algorithm 5.

3.2. Self-consistent field calculations

Once the necessary integrals have been evaluated, CHEM1D
uses them to compute the Hartree–Fock self-consistent
field (SCF) energy followed by the second- and third-
order Møller–Plesset perturbation energies. The formula-
tions used are those described in the text by Szabo and
Ostlund [43]; some modifications to the Hartree–Fock
methods are made however, mostly to exploit the domain
separation of the electrons.

Like most basis sets used in quantum chemistry, the
basis sets described in Section 2.2 are not orthogonal. In
order to perform the iterative SCF procedure for comput-
ing the Hartree–Fock energy, it is necessary to transform

Algorithm 4 . Two-electron integrals between finite do-
mains
1: procedure FIN FIN(p, q)
2: MaxM = 2 max(E(p), E(q),O(p), O(q)) + 1
3: Allocate proto(−1 : MaxM, −1 : MaxM)
4: ◃ Used to store prototype integrals
5: EEEE PROTOTYPES(MaxM, proto)
6: for µ, ν = 1, E(p) do
7: for λ, σ = 1, E(q) do
8: (µν|λσ ) = S

p
µν S

q
λσ × proto(µ + ν, λ + σ )

9: (λσ |µν) = (µν|λσ )
10: end for
11: for λ, σ = 1, O(q) do
12: (µν|λσ ) = S

p
µν S

q
λσ × [(3 + 2(λ + σ ))

13: proto(µ + ν, λ + σ ) − (2 + 2(λ + σ ))
14: × proto(µ + ν, λ + σ + 1)]
15: ◃ Using Equation (25)
16: (λσ |µν) = (µν|λσ )
17: end for
18: end for

19:
...

20: end procedure
21: procedure EEEE PROTOTYPES(MaxM, proto)
22: M MINUS ONE(proto(:,−1))
23: M ZERO(proto(:, 0))
24: for i = 1, MaxM do
25: proto(MaxM, i) = (34)
26: proto(MaxM − 1, i) = (35)
27: ◃ Compute from power series
28: end for
29: for n = 1, MaxM do
30: for m = MaxM − 2, 1,−1 do
31: Generate proto(m, n) using Equation (31)
32: ◃ m = µ + ν, n = λ + σ

33: end for
34: end for
35: end procedure
36: procedure M MINUS ONE(output)
37: Compute hypergeometrics in (34) for µ + ν =

MaxM, MaxM − 1
38: ◃ From power series
39: for m = MaxM − 2, 1,−1 do
40: Compute hypergeometrics in (34) for µ + ν = m

via recurrence
41: end for
42: Combine hypergeometric functions and store in output

43: ◃ Using Equation (34)
44: end procedure
45: procedure M ZERO(output)
46: Compute hypergeometrics in (35) for µ + ν =

MaxM, MaxM − 1
47: ◃ From power series
48: for m = MaxM − 2, 1,−1 do
49: Compute hypergeometrics in (35) for µ + ν = m

via recurrence
50: end for
51: Combine hypergeometric functions and store in output

52: ◃ Using Equation (35)
53: end procedure
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1852 C.J. Ball and P.M.W. Gill

Algorithm 5. Electron repulsion integral driver
1: procedure ERI
2: INF INF
3: for p ∈ DI do
4: QUASI INF(p)
5: for q ∈ DF do
6: INF FIN(p, q)
7: end for
8: end for
9: for p ∈ DF do

10: QUASI FIN(p)
11: for q ∈ DF do
12: FIN FIN(p, q)
13: end for
14: end for
15: end procedure

the non-orthogonal basis to an orthogonal one. CHEM1D
follows the procedure described by Szabo and Ostlund [43]
for canonical orthogonalisation. We prefer this over sym-
metric orthogonalisation for numerical reasons. Construct-
ing either of these orthogonalisations requires finding the
eigen decomposition for the overlap matrix. This matrix
becomes poorly conditioned relatively quickly due to the
basis sets we use. The canonical orthogonalisation allows
us to account for this by removing columns of the matrix;
the symmetric orthogonalisation does not, resulting in a
large loss of precision and erratic SCF behaviour. Note that
since this matrix is dependent upon the overlap matrix it
inherits the same block structure.

Three quantities remain to be considered before an SCF
iteration can be described. The first two of these are the
density and orbital coefficient matrices. An initial guess
at the orbitals is needed; CHEM1D currently uses the zero
matrix as a guess and we have found this to be sufficient for
most purposes. It is then possible to generate the density
matrix from the orbital coefficients as described by Szabo
and Ostlund [43].

Each orbital must be constructed of basis functions in
only one domain; however, constructing an orbital from ba-
sis functions in multiple domains implies that an electron
occupying it would be able to move across nuclei, violating
impenetrability. Both the density matrix and the orbital co-
efficient matrix therefore have the same block structure as
the one-electron matrices. We can store both of these and
construct the density matrix domain by domain.

The final matrix that is needed to perform an SCF cycle
is referred to as the G matrix by Szabo and Ostlund. This
matrix measures the average repulsion of an electron in the
field of all others and is given by the following formula:

Gµ,ν =
∑

λσ

Pλ,σ (µν||λσ ), (45)

where P is the density matrix. The reliance on P forces
λ and σ to be in the same domain; the sum can then be
separated further into another sum over each domain. For
the integral (µν||λσ ) to be non-zero, µ and ν must then also
be in the same domain, giving the matrix G the same block
structure as all the previous matrices we have considered.
We give our algorithm for the construction of G over a given
domain p in Algorithm 6.

Algorithm 6. Construction of the two-electron Gp matrix
1: procedure BUILD G(p)
2: for q ∈ D do ◃ Find the interaction of domain p

3: with every other domain
4: for µ, ν = 1, N(p) do
5: G

p
µ,ν =

∑N(q)
λ,σ=1 P

q
λσ (µν||λσ )

6: ◃ P q is the density in domain q

7: end for
8: end for
9: end procedure

We have now described the necessary components for
an SCF iteration to be evaluated. However, thanks to the
domain separation present in all the matrices, a significant
optimisation can be included: each iteration can be com-
puted over each domain individually. The only exception
to this complete separation of the SCF procedure is that
the new density in each cycle must be calculated for each
domain before the cycle can begin; this ensures the cor-
rect coupling between electrons in different domains. We
note that this leads to a simple method for parallelisation of
the calculation, with the limit that each thread will require
race conditions to ensure the iteration over each domain
proceeds in lockstep.

We also employ the direct inversion in the iterative sub-
space (DIIS) method of Pulay [46,47] to accelerate the SCF
convergence. It reduces both the build-up of roundoff er-
ror and the execution time. By default, the SCF iteration
terminates when the root-mean-square of the DIIS error
matrix drops below 10−6. We present pseudocode for the
procedure we use to evaluate an SCF cycle in Algorithm 7.

3.3. Møller–Plesset perturbation theory

The final component of CHEM1D are the routines for
calculating Møller–Plesset perturbation corrections to the
Hartree–Fock energy. Both the second- and third-order cor-
rections are currently implemented according to the pro-
cedure described by Szabo and Ostlund [43]. Our current
implementation does not exploit the domain separation and,
because of this, these correlation corrections are the slowest
parts of the program. Due to the standard nature of our algo-
rithm for these calculations, we have omitted a pseudocode
description.
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Molecular Physics 1853

Algorithm 7. SCF iteration
1: procedure SCF CYCLE
2: for p ∈ D do
3: BUILD P(p)
4: ◃ Update density matrix for all domains
5: end for
6: for p ∈ D do
7: BUILD G(p)
8: F

p
1 = Gp + T p + V p

9: ◃ F
p
1 is the current Fock matrix

10: Build and store new error matrix
11: ◃ F

p
i is from ith last cycle

12: if Current cycle < l then
13: ◃ Number of stored Fock matrices = l

14: F ′ = (Xp)T FpXp

15: else
16: Solve DIIS matrix
17: ◃ DIIS coefficients → ci

18: F ′ = (Xp)T (
∑l

i=1 ciF
p
i )Xp

19: end if
20: Diagonalise F ′ ◃ Eigenvectors → C ′

21: Cp = XpC ′

22: end for
23: if not all domains have converged then
24: SCF CYCLE ◃ Recursive call
25: end if
26: end procedure

3.4. Pseudocode overview

Now that we have defined how the various components op-
erate, we present an overview of the main CHEM1D program
in Algorithm 8.

4. Results

4.1. Atomic energies

We begin our tests of CHEM1D by studying atomic systems.
In our earlier work [28], we computed the total energies,
ionisation energies and electron affinities of the first 10
elements very accurately. As a preliminary demonstration
of the capabilities of CHEM1D, we have performed the same
study here.

Our experiments suggest that a basis set of nine expo-
nential functions on each side of the nucleus (see Equa-
tions (1) and (2)) produces the best results for this study.
CHEM1D’s default value of α = Z/m2 has been used, where
m = 9 and Z is the charge of the atom’s nucleus. We remove
one column from the orthogonalisation matrix to facilitate
convergence and the results are shown in Table 1.

For small atoms, the total energies produced by
CHEM1D compare favourably with our previous results. Up
to boron, the Hartree–Fock energies agree with our previous
results within a millihartree. However, beyond this point,

Algorithm 8. Chem1D overview
1: procedure CHEM1D(input)
2: Read input

3: Allocate integral storage
4: for p ∈ D do ◃ Build the one-electron matrices
5: OVERLAP(p)
6: KINETIC(p)
7: POTENTIAL(p)
8: end for
9: ERI ◃ Build the set of two-electron integrals

10: DOUBLE BAR ◃ Contract the quasi-integrals
11: for p ∈ D do
12: ◃ Build the orthogonalisation matrices
13: BUILD X(p)
14: end for
15: SCF CYCLE
16: MO TRANSFORM
17: ◃ Transform the double-bar integrals to MO basis
18: MPN CORRELATION
19: Print output
20: end procedure

the results diverge significantly. These inaccuracies stem
directly from the lack of diffuse functions in the basis set
that we have used in this study. Our previous results showed
that heavy atoms in 1D are surprisingly diffuse objects [28].
This error is most evident in the ionisation energy and elec-
tron affinity of fluorine, where the constriction imposed by
the poor basis set is great enough to reverse the sign of these
quantities.

Unsurprisingly, the Møller–Plesset correlation energies
also suffer from basis set incompleteness because, as the
number of electrons increases, the virtual space is progres-
sively diminished.

The total energy errors are inherited by the ionisation
energies and electron affinities and, as before, the lack of
diffuse functions is to blame.

In spite of the basis set deficiencies, we are still able
to observe some of the unusual properties of 1D atoms. In
particular, we are able to reconstruct the thin periodic table
presented in our previous work by looking at the periodic
behaviour of the ionisation energies. In 3D chemistry, the
ionisation energy increases monotonically when moving
across a row of the periodic table before dropping when
moving to the next row. We find similar behaviour here.
The period of these trends is only two atoms however, which
suggests that the periodic table of 1D elements has only two
groups.

4.2. Diatomic molecules

We now turn our attention to diatomic molecules. Our pre-
vious study [28] investigated diatomics with a maximum of
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Table 1. Atomic energies (in hartrees), ionisation energies and electron affinities (in electron volts).

Atomic energies Ionisation energies Electron affinities

Atom −EHF −EMP2 −EMP3 HF MP2 MP3 HF MP2 MP3

H 0.500000 0.000 0.000 13.606 13.606 13.606 3.887 3.933 3.956
He 3.242552 1.998 2.636 33.812 33.866 33.883
Li 8.007278 2.953 3.644 4.485 4.507 4.512 1.396 1.409 1.414
Be 15.415561 5.128 6.127 10.351 10.388 10.397
B 25.356662 6.818 8.036 2.060 2.077 2.084 0.584 0.594 0.598
C 38.082819 9.613 11.420 4.621 4.654 4.666
N 53.558680 11.175 12.967 1.054 1.056 1.057 0.349 0.350 0.351
O 71.890505 13.173 15.187 2.232 2.241 2.244
F 93.055546 14.728 16.757 −0.208 −0.222 −0.227 −1.277 −1.294 −1.301
Ne 117.240157 14.951 16.670 1.075 1.069 1.067

The electron affinities for He, Be, C, O and Ne have been omitted. It has been found previously that the anions of these species are auto-ionising [28].

two electrons. We concluded that having two or more elec-
trons in a finite domain is highly destabilising because of the
large resulting kinetic energy. We also observed that atomic
species with an odd number of electrons carry a permanent
dipole due to the particle impenetrability trapping different
numbers of electrons on each side of the nucleus. We spec-
ulated that, as a consequence of this, stable molecules could
form with multiple electrons in a finite domain, despite the
increase in kinetic energy, due to favourable dipole–dipole
interactions. Thanks to the recent developments in CHEM1D
we are now able to test this conjecture.

Results for a small collection of diatomic molecules can
be found in Table 2. Only electronic configurations which
permit a bound molecule have been included. We use a basis
set of eight exponential functions in each infinite domain
and a combination of six even and six odd functions in the
finite domain.

These results show some interesting effects which re-
veal that our earlier prediction was not entirely accurate.
In fact, there are a number of striking results which are
counter-intuitive from the viewpoint of 3D chemistry.

First, we see that H has at least one favourable bond-
ing configuration with other nuclei. The reason for this is
simple: H can present an unshielded positive charge to the

electrons of the other nucleus. This allows it to bind strongly
even to the 1D elements with no permanent dipole. In fact,
the bonding in 1H2Be2 is stronger than that of 1H1He1. The
H nucleus interacts with the outermost electron of the other
atom, which in the case of Be is shielded from the charge
of its own nucleus by the interior electron.

There are three configurations for LiH in 1D that seem
likely to result in bonding: 1Li2H1, 2Li2H and 2Li1H1. The
last of these does not result in binding, probably because
the opposed dipoles of the H and Li atoms result in insuffi-
cient stabilising potential energy. The other two do form a
bound molecule, although there is a very large difference in
binding energy. The comparatively small bond dissociation
energy of 2Li2H is a result of the second exterior electron
being forced into a higher energy orbital; in 1Li2H1, both
electrons on the outside of the molecule are able to occupy
the lowest energy orbital in their domain.

The final noteworthy result relating to the binding in
hydrogen-containing diatomics is the remarkable strength
of the bond with respect to its length (except in H2Li2). We
noted in our previous manuscript that the length of the H1H1

bond is roughly double than that of the 3D H2 molecule,
while they have a similar strength [28,48]. The bond in
1H2Li1 however is roughly 90% of the strength of the bond

Table 2. Equilibrium bond distances (in bohrs, Hartree–Fock energies (in hartrees), correlation energies (in millihartrees) and bond
dissociation energies (in hartrees) of bound states of diatomic molecules.

Bond dissociation energies

Molecule Req −EHF −EMP2 −EMP3 HF MP2 MP3

H1H1 2.636 1.184572 0.844 1.154 0.185 0.185 0.186
1H1He1 2.025 3.880304 2.300 2.978 0.138 0.138 0.138
1H2Li1 5.076 8.679540 4.507 5.747 0.172 0.174 0.174
H2Li2 5.212 8.541236 3.565 4.352 0.034 0.035 0.035
1H2Be2 3.895 16.074792 6.859 8.291 0.159 0.161 0.161
1He2Li2 4.505 11.258911 5.398 6.757 0.009 0.010 0.010
1Li3Li2 7.142 16.021014 7.107 8.694 0.006 0.008 0.008
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in H1H1, yet the bond is almost double the length. This is
also much longer than the corresponding 3D bond length,
approximately 3.015 bohrs [49]. The strength of the 3D LiH
bond falls between the two bound configurations of 1D LiH
at approximately 92 millihartrees [49], making the bond
in the more favourable 1H2Li1 configuration significantly
stronger than its 3D counterpart.

Diatomics of two heavy atoms produce more interesting
and unexpected results, while also revealing a deficiency in
CHEM1D.

We find that the molecule 1He2Li2 is very gently bound.
Previously, we would have expected this molecule to be
unbound given the lack of stabilising dipole interactions.
Given the bonding behaviour of the 1H1He1 and 1H2Be2

molecules however, we might have expected this bond to
be reasonably strong as a result of similar electrostatic ar-
guments. When the H atom is replaced by Li, we introduce
an extra electron into the finite bond. Now that the domain
contains two electrons, one is forced to occupy a higher en-
ergy orbital. This carries a significant energy penalty which
the favourable electrostatic interactions are only just able to
overcome.

We examined two possible configurations of the Li
dimer: 2Li2Li2 and 1Li3Li2. The former configuration does
not bind due to the opposition of the dipoles on the two in-
dividual atoms. The latter configuration does bind however,
but with an extremely long bond length. Using CHEM1D to
determine the bonding energy suggests that this molecule
has a lower binding energy than 1He2Li2. This is unexpected
given the dipole–dipole interactions that should stabilise the
Li dimer.

We have also examined this using a quadruple-precision
version of CHEM1D. Using higher precision allows us to use
larger basis sets before near linear dependence becomes an
issue. The results from this program suggest that the equilib-
rium bond length is significantly longer (at least 8.5 bohrs).
Around this configuration the binding energy increases by
at least 40 millihartrees, which suggests the relative bond-
ing behaviour we expect is more likely.

This would give 1D 1Li3Li2 a dissociation energy close
to that of the 3D Li2 dimer (approximately 39 millihartrees
[50]). Like the 1D hydrogen molecule however, the 1D

lithium dimer has a significantly longer bond than the 3D
dimer, 7.142 bohrs for the 1D molecule compared to ap-
proximately 5.051 bohrs for the 3D molecule [50].

Unfortunately, the basis sets that can typically be used
in double precision without incurring numerical problems
have only limited ability to describe long bonds with mul-
tiple electrons. The basis functions we have used are high
in amplitude around the middle of the bond and decay
relatively quickly towards its edges. In a stretched bond,
however, the electrons tend to localise near the nuclei; in
a bond with many electrons and accordingly heavy nuclei,
this localisation rapidly becomes very restrictive. Describ-
ing these orbitals, which are built up near the edges of the
bond, with the basis sets we have described requires large
molecular orbital coefficients with oscillating signs.

In light of this, we have refrained from examining fur-
ther systems containing three or more electrons in a finite
domain. Additionally, we consider that a bond length of
more than 6 bohrs is likely to be indicative of a significant
drop in numerical accuracy.

4.3. Triatomic molecules

In addition to diatomics, we have also examined a small
selection of triatomic molecules. We have used the same
methods as were employed for the diatomic molecules. The
results can be seen in Table 3.

When compared to the behaviour of the diatomic
molecules, this set of results reveals a great deal about
how larger molecules are likely to form in 1D. The atom-
isation energies of each triatomic is roughly equal to the
sum of the bond dissociation energies in the appropriate
two diatomic molecules. The difference can be rationalised
as a consequence of the alignment of the permanent dipoles
belonging to the constituent atoms.

Taking H1H1H1 as a simple example, we obtain an ap-
proximate atomisation energy of 0.370 hartrees by doubling
the bond dissociation energy of H1H1. The dipoles of all
three atoms are aligned however, and as a result there is
a bonus to the binding strength of about 15 millihartrees,
giving a final atomisation energy of approximately 0.385.

Table 3. Equilibrium bond distances (in bohrs), Hartree–Fock energies (in hartrees), correlation energies (in millihartrees) and atomisation
energies (in hartrees) of triatomic molecules.

Atomisation energies

Molecule Req −EHF −EMP2 −EMP3 HF MP2 MP3

H1H1H1 2.648 2.762 1.883315 1.538 2.099 0.383 0.385 0.385
1H1H1He1 2.705 2.033 4.565870 3.068 4.037 0.323 0.324 0.325
1H1He1H1 2.031 2.031 4.493606 2.637 3.417 0.251 0.252 0.252
1H1H2Be2 2.388 4.426 16.841024 6.985 8.480 0.425 0.427 0.428
1H2Be2H1 3.881 3.881 16.730968 8.060 9.862 0.315 0.318 0.319
1Li2H2Li2 4.129 8.458 16.766343 7.902 9.755 0.252 0.254 0.254
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Moving down the set of examples, we find that the
atomisation energy of 1H1H1He1 is almost exactly equal to
the strength of its two constituent bonds. The alignment of
the two hydrogen dipoles is already accounted for in the
bond dissociation energy of H1H1, and the helium atom
lacks a dipole which would provide an extra contribution.
The strength of the binding in 1H1He1H1 (approximately
0.25 hartrees) is slightly lower than that of two 1H1He1

bonds (approximately 0.275 hartrees) due to the repulsion
of the opposing hydrogen dipoles.

This destabilisation is dependent upon the distance
between the two interacting dipoles. We see a loss of
approximately 25 millihartrees in the bonding strength of
1H1He1H1, but in 1H2Be2H1, where the distance between
the two hydrogen atoms has almost doubled, a loss of only
approximately 5 millihartrees is observed. Additionally,
the magnitude of the effect is dependent upon the types
of dipoles interacting. As mentioned above, the H1H1H1

molecule gains roughly 15 millihartrees from the additional
dipole interaction, while 1Li2H2Li2 gains approximately
50 millihartrees from the interaction between the two
Li atoms.

It should be noted that this gain may actually be under-
estimated by our calculations due to the large equilibrium
bond length we find in this molecule. As stated in Sec-
tion 4.2, we believe that our basis set is insufficient for
accurately describing bonds with lengths above 6 bohrs. It
appears that the bonds in triatomic molecules are notice-
ably longer than those in diatomics, even when favourable
dipole interactions increase the strength of the molecule’s
bonds. This leads to very long bond lengths for Li contain-
ing molecules, and due to concerns of numerical accuracy
we have omitted results for other Li containing triatomic
molecules.

5. Conclusion

We have written a program, called CHEM1D, for computing
energies of 1D molecules at the Hartree–Fock level and
beyond. This has enabled us to probe the behaviour of 1D
molecules that were previously unaccessible, and to develop
a more sophisticated understanding of 1D chemistry.

In particular, we have shown that multi-electron bonds
do exist in 1D molecules, notwithstanding our previous
conjecture to the contrary. We have also observed some
strange effects that result from the limited dimensionality
of the system, such as unusual strong bonding between
distant atoms and the dominance of permanent dipoles upon
reactivity.

Our experiments have highlighted some of the current
limitations of the CHEM1D program and, in particular, it
appears that our choice of basis functions is non-optimal.
This presents avenues for continued development that we
plan to pursue in order to allow the examination of more
complicated 1D systems.

The CHEM1D package can be freely downloaded from
the Molecular Physics webpage.
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[27] A. López-Castillo, Chaos 18 (3), 033130 (2008).
[28] P.F. Loos, C.J. Ball, and P.M.W. Gill, Phys. Chem. Chem.

Phys. 17, 3196 (2015).
[29] R. Loudon, Am. J. Phys. 27, 649 (1959).
[30] T.D. Imbo and U.P. Sukhatme, Phys. Rev. Lett. 54, 2184

(1985).
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